Multilevel decomposition based nondeterministic design optimization for structural systems

The paper presents a methodology for nondeterministic design optimization of hierarchically coupled structural systems. Deterministic multilevel decomposition-based design formulations for such systems have been modified to incorporate the presence of uncertainty in both the problem parameters, and in design variables at various levels of a multilevel hierarchical system. These formulations not only allow for robust design solution strategies, but also provide a mechanism for tracking the propagation of uncertainty in such hierarchical systems. For uncertain design variables distributed across several subsystems, an iterative problem formulation is proposed. A widely used numerical example based on the design of a portal frame is used to illustrate the problem complexities in this class of design problems, and to demonstrate the effectiveness of the proposed solution techniques.

[1]  Kroo Ilan,et al.  Multidisciplinary Optimization Methods for Aircraft Preliminary Design , 1994 .

[2]  Kyung K. Choi,et al.  Reliability-based design optimization for crashworthiness of vehicle side impact , 2004 .

[3]  Jaroslaw Sobieszczanski-Sobieski,et al.  Optimization by decomposition: A step from hierarchic to non-hierarchic systems , 1989 .

[4]  Achintya Haldar,et al.  Probability, Reliability and Statistical Methods in Engineering Design (Haldar, Mahadevan) , 1999 .

[5]  Wei Chen,et al.  Probabilistic Analytical Target Cascading: A Moment Matching Formulation for Multilevel Optimization Under Uncertainty , 2006 .

[6]  Wei Chen,et al.  Methodology for Managing the Effect of Uncertainty in Simulation-Based Design , 2000 .

[7]  Jeremy S. Agte,et al.  Bi-Level Integrated System Synthesis , 1998 .

[8]  Sankaran Mahadevan,et al.  Reliability Analysis of Rotorcraft Composite Structures , 2001 .

[9]  T. F. Johnson,et al.  Effects of Uncertainty Reduction on Weight of Composite Laminates at Cryogenic Temperatures , 2005, DAC 2005.

[10]  Ramana V. Grandhi,et al.  Reliability-based Structural Design , 2006 .

[11]  S. Rahman,et al.  A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics , 2004 .

[12]  Walter Murray,et al.  A local convergence analysis of bilevel decomposition algorithms , 2006 .

[13]  Ilan Kroo,et al.  Collaborative optimization using response surface estimation , 1998 .

[14]  P. Pinto Reliability methods in earthquake engineering , 2001 .

[15]  Tao Jiang,et al.  Target Cascading in Optimal System Design , 2003, DAC 2000.

[16]  R. Rackwitz,et al.  Structural reliability under combined random load sequences , 1978 .

[17]  Michael Florian,et al.  Optimizing frequencies in a transit network: a nonlinear bi-level programming approach , 1995 .

[18]  R. Rackwitz Reliability analysis—a review and some perspectives , 2001 .

[19]  T Haftka Raphael,et al.  Multidisciplinary aerospace design optimization: survey of recent developments , 1996 .

[20]  Joaquim R. R. A. Martins,et al.  An adaptive approach to constraint aggregation using adjoint sensitivity analysis , 2007 .

[21]  G. Kreisselmeier,et al.  SYSTEMATIC CONTROL DESIGN BY OPTIMIZING A VECTOR PERFORMANCE INDEX , 1979 .

[22]  Garret N. Vanderplaats,et al.  Numerical optimization techniques for engineering design , 1999 .

[23]  K. M. Riley,et al.  Sensitivity of Optimum Solutions of Problem Parameters , 1982 .

[24]  J. Sobieszczanski-Sobieski,et al.  Bilevel Integrated System Synthesis for Concurrent and Distributed Processing , 2002 .

[25]  Henrik O. Madsen,et al.  Structural Reliability Methods , 1996 .

[26]  Jonathan F. Bard,et al.  A bilevel programming approach to determining tax credits for biofuel production , 2000, Eur. J. Oper. Res..

[27]  Manolis Papadrakakis,et al.  Design optimization of steel structures considering uncertainties , 2005 .

[28]  Kurt Maute,et al.  Reliability-based design optimization of aeroelastic structures , 2004 .

[29]  Robert D. Braun,et al.  Collaborative optimization: an architecture for large-scale distributed design , 1996 .

[30]  Ritesh Khire,et al.  Handling Uncertainty Propagation in Laminated Composites Through Multiscale Modeling of Progressive Failure , 2007 .

[31]  Robert H. Sues,et al.  An innovative framework for reliability-based MDO , 2000 .

[32]  Jin Cheng,et al.  Aerostatic stability analysis of suspension bridges under parametric uncertainty , 2003 .

[33]  Jeffrey C. Trinkle,et al.  Complementarity formulations and existence of solutions of dynamic multi-rigid-body contact problems with coulomb friction , 1996, Math. Program..

[34]  J. Outrata,et al.  Effective reformulations of the truss topology design problem , 2006 .

[35]  Stephane Pageau,et al.  Reliability-Based Optimization Considering Manufacturing and Operational Uncertainties , 2001 .

[36]  Layne T. Watson,et al.  Multidisciplinary Design Optimization with Quasiseparable Subsystems , 2005 .

[37]  Jaroslaw Sobieszczanski-Sobieski,et al.  Multidisciplinary aerospace design optimization - Survey of recent developments , 1996 .

[38]  Stephen M. Batill,et al.  DECOMPOSITION STRATEGIES FOR RELIABILITY BASED OPTIMIZATION IN MULTIDISCIPLINARY SYSTEM DESIGN , 2002 .

[39]  Natalia Alexandrov,et al.  Analytical and Computational Aspects of Collaborative Optimization for Multidisciplinary Design , 2002 .

[40]  Panos Y. Papalambros,et al.  Design Optimization of Hierarchically Decomposed Multilevel Systems Under Uncertainty , 2006 .