Initiation and Regulation of Synaptic Transmission by Presynaptic Calcium Channel Signaling Complexes

[1]  W. Catterall,et al.  Regulation of Presynaptic CaV2.1 Channels by Ca2+ Sensor Proteins Mediates Short-Term Synaptic Plasticity , 2008, Neuron.

[2]  Aaron M. Beedle,et al.  RIM1 confers sustained activity and neurotransmitter vesicle anchoring to presynaptic Ca2+ channels , 2007, Nature Neuroscience.

[3]  T. Südhof,et al.  Synaptotagmin-1, -2, and -9: Ca2+ Sensors for Fast Release that Specify Distinct Presynaptic Properties in Subsets of Neurons , 2007, Neuron.

[4]  Annette C. Dolphin,et al.  Functional biology of the α 2 δ subunits of voltage-gated calcium channels , 2007 .

[5]  Amy Lee,et al.  Caldendrin, a Neuron-specific Modulator of Cav/1.2 (L-type) Ca2+ Channels* , 2007, Journal of Biological Chemistry.

[6]  W. Catterall,et al.  Bidirectional Modulation of Transmitter Release by Calcium Channel/Syntaxin Interactions In Vivo , 2007, The Journal of Neuroscience.

[7]  G. Obermair,et al.  Role of the synprint site in presynaptic targeting of the calcium channel CaV2.2 in hippocampal neurons , 2006, The European journal of neuroscience.

[8]  David Baker,et al.  Voltage sensor conformations in the open and closed states in ROSETTA structural models of K(+) channels. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[9]  William A. Catterall,et al.  International Union of Pharmacology. XLVII. Nomenclature and Structure-Function Relationships of Voltage-Gated Sodium Channels , 2005, Pharmacological Reviews.

[10]  Wallace B. Thoreson,et al.  Synaptic transmission at retinal ribbon synapses , 2005, Progress in Retinal and Eye Research.

[11]  Nicholas W. Oesch,et al.  Photoreceptor calcium channels: Insight from night blindness , 2005, Visual Neuroscience.

[12]  E. Campbell,et al.  Crystal Structure of a Mammalian Voltage-Dependent Shaker Family K+ Channel , 2005, Science.

[13]  William A Catterall,et al.  Differential Regulation of CaV2.1 Channels by Calcium-Binding Protein 1 and Visinin-Like Protein-2 Requires N-Terminal Myristoylation , 2005, The Journal of Neuroscience.

[14]  W. Catterall,et al.  Modulation of CaV2.1 Channels by the Neuronal Calcium-Binding Protein Visinin-Like Protein-2 , 2005, The Journal of Neuroscience.

[15]  E. Neher,et al.  Presynaptic calcium and control of vesicle fusion , 2005, Current Opinion in Neurobiology.

[16]  W. Catterall,et al.  Mechanism of SNARE protein binding and regulation of Cav2 channels by phosphorylation of the synaptic protein interaction site , 2005, Molecular and Cellular Neuroscience.

[17]  A. Tischler,et al.  Deletion of the synaptic protein interaction site of the N-type (CaV2.2) calcium channel inhibits secretion in mouse pheochromocytoma cells. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[18]  F. Rieke,et al.  Essential role of Ca2+-binding protein 4, a Cav1.4 channel regulator, in photoreceptor synaptic function , 2004, Nature Neuroscience.

[19]  T. Südhof The synaptic vesicle cycle , 2004 .

[20]  F. Haeseleer,et al.  Ca2+-Binding Protein-1 Facilitates and Forms a Postsynaptic Complex with Cav1.2 (L-Type) Ca2+ Channels , 2004, The Journal of Neuroscience.

[21]  W. Catterall,et al.  Molecular determinants of Ca2+/calmodulin-dependent regulation of Cav2.1 channels , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Darrell R. Abernethy,et al.  International Union of Pharmacology: Approaches to the Nomenclature of Voltage-Gated Ion Channels , 2003, Pharmacological Reviews.

[23]  Annette C. Dolphin,et al.  β Subunits of Voltage-Gated Calcium Channels , 2003, Journal of bioenergetics and biomembranes.

[24]  D. T. Yue,et al.  Unified Mechanisms of Ca2+ Regulation across the Ca2+ Channel Family , 2003, Neuron.

[25]  Andreas Jeromin,et al.  Acute changes in short-term plasticity at synapses with elevated levels of neuronal calcium sensor-1 , 2003, Nature Neuroscience.

[26]  J. Spafford,et al.  Functional interactions between presynaptic calcium channels and the neurotransmitter release machinery , 2003, Current Opinion in Neurobiology.

[27]  W. Catterall,et al.  Requirement for the synaptic protein interaction site for reconstitution of synaptic transmission by P/Q-type calcium channels , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[28]  W. Catterall,et al.  Subtype-selective reconstitution of synaptic transmission in sympathetic ganglion neurons by expression of exogenous calcium channels , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[29]  A. Smit,et al.  Calcium Channel Structural Determinants of Synaptic Transmission between Identified Invertebrate Neurons* , 2003, The Journal of Biological Chemistry.

[30]  I. Bezprozvanny,et al.  Synaptic Targeting of N-Type Calcium Channels in Hippocampal Neurons , 2002, The Journal of Neuroscience.

[31]  J. Roder,et al.  Neuronal Calcium Sensor 1 and Activity-Dependent Facilitation of P/Q-Type Calcium Currents at Presynaptic Nerve Terminals , 2002, Science.

[32]  K. Palczewski,et al.  Calcium-binding proteins: intracellular sensors from the calmodulin superfamily. , 2002, Biochemical and biophysical research communications.

[33]  A. Akaike,et al.  Identification and Characterization of Novel Human Cav2.2 (α1B) Calcium Channel Variants Lacking the Synaptic Protein Interaction Site , 2002, The Journal of Neuroscience.

[34]  R. Burgoyne,et al.  Voltage-independent Inhibition of P/Q-type Ca2+Channels in Adrenal Chromaffin Cells via a Neuronal Ca2+Sensor-1-dependent Pathway Involves Src Family Tyrosine Kinase* , 2001, The Journal of Biological Chemistry.

[35]  G. Schiavo,et al.  Direct Interaction of the Rab3 Effector RIM with Ca2+Channels, SNAP-25, and Synaptotagmin* , 2001, The Journal of Biological Chemistry.

[36]  Andy Hudmon,et al.  Molecular Basis of Calmodulin Tethering and Ca2+-dependent Inactivation of L-type Ca2+ Channels* , 2001, The Journal of Biological Chemistry.

[37]  D. T. Yue,et al.  Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels , 2001, Nature.

[38]  G. Zamponi,et al.  Distinct Molecular Determinants Govern Syntaxin 1A-Mediated Inactivation and G-Protein Inhibition of N-Type Calcium Channels , 2001, The Journal of Neuroscience.

[39]  R. Burgoyne,et al.  Neuronal Ca2+ Sensor-1/Frequenin Functions in an Autocrine Pathway Regulating Ca2+ Channels in Bovine Adrenal Chromaffin Cells* , 2000, The Journal of Biological Chemistry.

[40]  R. Burgoyne,et al.  The neuronal calcium sensor family of Ca2+-binding proteins. , 2000, The Biochemical journal.

[41]  R. Tsien,et al.  Molecular determinants of the functional interaction between syntaxin and N-type Ca2+ channel gating. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[42]  W. Catterall,et al.  Ca2+/Calmodulin-Dependent Facilitation and Inactivation of P/Q-Type Ca2+ Channels , 2000, The Journal of Neuroscience.

[43]  R. Tsien,et al.  Ca2+-sensitive Inactivation and Facilitation of L-type Ca2+ Channels Both Depend on Specific Amino Acid Residues in a Consensus Calmodulin-binding Motif in theα1C subunit* , 2000, The Journal of Biological Chemistry.

[44]  Aaron M. Beedle,et al.  G Protein Modulation of N-type Calcium Channels Is Facilitated by Physical Interactions between Syntaxin 1A and Gβγ* , 2000, The Journal of Biological Chemistry.

[45]  Gail Mandel,et al.  Nomenclature of Voltage-Gated Sodium Channels , 2000, Neuron.

[46]  R. Tsien,et al.  Nomenclature of Voltage-Gated Calcium Channels , 2000, Neuron.

[47]  C. Verlinde,et al.  Five Members of a Novel Ca2+-binding Protein (CABP) Subfamily with Similarity to Calmodulin* , 2000, The Journal of Biological Chemistry.

[48]  W. Catterall,et al.  Reciprocal regulation of P/Q-type Ca2+ channels by SNAP-25, syntaxin and synaptotagmin , 1999, Nature Neuroscience.

[49]  Scott T. Wong,et al.  Ca2+/calmodulin binds to and modulates P/Q-type calcium channels , 1999, Nature.

[50]  K. Deisseroth,et al.  Calmodulin supports both inactivation and facilitation of L-type calcium channels , 1999, Nature.

[51]  R. Olcese,et al.  Ca2+-induced inhibition of the cardiac Ca2+ channel depends on calmodulin. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[52]  D. T. Yue,et al.  Calmodulin Is the Ca2+ Sensor for Ca2+-Dependent Inactivation of L-Type Calcium Channels , 1999, Neuron.

[53]  D. Atlas,et al.  The voltage sensitive Lc-type Ca2+ channel is functionally coupled to the exocytotic machinery. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[54]  E. Chapman,et al.  Delineation of the Oligomerization, AP-2 Binding, and Synprint Binding Region of the C2B Domain of Synaptotagmin* , 1998, The Journal of Biological Chemistry.

[55]  W. Catterall,et al.  Physical Link and Functional Coupling of Presynaptic Calcium Channels and the Synaptic Vesicle Docking/Fusion Machinery , 1998, Journal of bioenergetics and biomembranes.

[56]  C. Lévêque,et al.  Interaction of Cysteine String Proteins with the α1A Subunit of the P/Q-type Calcium Channel* , 1998, The Journal of Biological Chemistry.

[57]  Margaret Barnes-Davies,et al.  Inactivation of Presynaptic Calcium Current Contributes to Synaptic Depression at a Fast Central Synapse , 1998, Neuron.

[58]  H. Reuter,et al.  Ca2+-sensitive inactivation of L-type Ca2+ channels depends on multiple cytoplasmic amino acid sequences of the alpha1C subunit. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[59]  W. Catterall,et al.  Ca2+-dependent and -independent interactions of the isoforms of the alpha1A subunit of brain Ca2+ channels with presynaptic SNARE proteins. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[60]  C. Gundersen,et al.  Evidence That Cysteine String Proteins Regulate an Early Step in the Ca2+-Dependent Secretion of Neurotransmitter atDrosophila Neuromuscular Junctions , 1997, The Journal of Neuroscience.

[61]  W. Catterall,et al.  Phosphorylation of the Synaptic Protein Interaction Site on N-type Calcium Channels Inhibits Interactions with SNARE Proteins , 1997, The Journal of Neuroscience.

[62]  E. F. Stanley The calcium channel and the organization of the presynaptic transmitter release face , 1997, Trends in Neurosciences.

[63]  E. Neher,et al.  Alteration of Ca2+ Dependence of Neurotransmitter Release by Disruption of Ca2+ Channel/Syntaxin Interaction , 1997, The Journal of Neuroscience.

[64]  W. Catterall,et al.  Interaction of the synprint site of N-type Ca2+ channels with the C2B domain of synaptotagmin I. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[65]  D. Tobi,et al.  Synaptotagmin restores kinetic properties of a syntaxin‐associated N‐type voltage sensitive calcium channel , 1997 .

[66]  B. Gähwiler,et al.  Either N- or P-type Calcium Channels Mediate GABA Release at Distinct Hippocampal Inhibitory Synapses , 1997, Neuron.

[67]  E. F. Stanley,et al.  Cleavage of syntaxin prevents G-protein regulation of presynaptic calcium channels , 1997, Nature.

[68]  W. Catterall,et al.  Inhibition of Neurotransmission by Peptides Containing the Synaptic Protein Interaction Site of N-Type Ca2+ Channels , 1996, Neuron.

[69]  D. Atlas,et al.  Functional interaction of syntaxin and SNAP‐25 with voltage‐sensitive L‐ and N‐type Ca2+ channels. , 1996, The EMBO journal.

[70]  W. Catterall,et al.  Isoform-specific interaction of the alpha1A subunits of brain Ca2+ channels with the presynaptic proteins syntaxin and SNAP-25. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[71]  W. Catterall,et al.  Calcium-dependent interaction of N-type calcium channels with the synaptic core complex , 1996, Nature.

[72]  R. Tsien,et al.  Functional impact of syntaxin on gating of N-type and Q-type calcium channels , 1995, Nature.

[73]  J. Hell,et al.  Immunochemical identification and subcellular distribution of the alpha 1A subunits of brain calcium channels , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[74]  Thomas C. Südhof,et al.  The synaptic vesicle cycle: a cascade of protein–protein interactions , 1995, Nature.

[75]  R. Scheller,et al.  The Biochemistry of Neurotransmitter Secretion(*) , 1995, The Journal of Biological Chemistry.

[76]  J. Luebke,et al.  Exocytotic Ca2+ channels in mammalian central neurons , 1995, Trends in Neurosciences.

[77]  W. Catterall,et al.  Identification of a syntaxin-binding site on N-Type calcium channels , 1994, Neuron.

[78]  T. Südhof,et al.  Synaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapse , 1994, Cell.

[79]  C. Lévêque,et al.  Purification of the N-type calcium channel associated with syntaxin and synaptotagmin. A complex implicated in synaptic vesicle exocytosis. , 1994, The Journal of biological chemistry.

[80]  E. F. Stanley Single calcium channels and acetylcholine release at a presynaptic nerve terminal , 1993, Neuron.

[81]  J. Buchanan,et al.  The spatial distribution of calcium signals in squid presynaptic terminals. , 1993, The Journal of physiology.

[82]  E. F. Stanley Presynaptic Calcium Channels and the Transmitter Release Mechanism , 1993, Annals of the New York Academy of Sciences.

[83]  G. Warren Bridging the gap , 1993, Nature.

[84]  Paul Tempst,et al.  SNAP receptors implicated in vesicle targeting and fusion , 1993, Nature.

[85]  M. Takahashi,et al.  HPC-1 is associated with synaptotagmin and omega-conotoxin receptor. , 1992, The Journal of biological chemistry.

[86]  J. Hell,et al.  Biochemical properties and subcellular distribution of an N-type calcium hannel α1 subunit , 1992, Neuron.

[87]  D. T. Yue,et al.  Submicroscopic Ca2+ diffusion mediates inhibitory coupling between individual Ca2+ channels , 1992, Neuron.

[88]  R. Scheller,et al.  Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. , 1992, Science.

[89]  P. Reiner,et al.  Ca2+ channels: diversity of form and function , 1992, Current Opinion in Neurobiology.

[90]  R Llinás,et al.  Microdomains of high calcium concentration in a presynaptic terminal. , 1992, Science.

[91]  W. Stühmer,et al.  Calcium channel characteristics conferred on the sodium channel by single mutations , 1992, Nature.

[92]  O. Jones,et al.  Distribution of Ca2+ channels on frog motor nerve terminals revealed by fluorescent omega-conotoxin , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[93]  A. Thomson Glycine modulation of the NMDA receptor/channel complex , 1989, Trends in Neurosciences.

[94]  R. Tsien,et al.  Multiple types of neuronal calcium channels and their selective modulation , 1988, Trends in Neurosciences.

[95]  W. Catterall,et al.  Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[96]  F. Dodge,et al.  Co‐operative action of calcium ions in transmitter release at the neuromuscular junction , 1967, The Journal of physiology.

[97]  E. Perez-Reyes Molecular physiology of low-voltage-activated t-type calcium channels. , 2003, Physiological reviews.

[98]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[99]  W. Catterall Structure and regulation of voltage-gated Ca2+ channels. , 2000, Annual review of cell and developmental biology.

[100]  N. Klugbauer,et al.  Voltage-dependent calcium channels: from structure to function. , 1999, Reviews of physiology, biochemistry and pharmacology.

[101]  J. Ramachandran,et al.  Antagonists of neuronal calcium channels: structure, function, and therapeutic implications. , 1995, Annual review of pharmacology and toxicology.

[102]  D. Swandulla,et al.  Neuronal calcium channels: kinetics, blockade and modulation. , 1989, Progress in biophysics and molecular biology.