Gallager B LDPC Decoder with Transient and permanent errors

In this paper, the performance of a noisy Gallager B decoder used to decode regular LDPC codes is studied. We assume that the noisy decoder is subject to both transient processor errors and permanent memory errors. Due to the asymmetric nature of permanent errors, we model error propagation in the decoder via a suitable asymmetric channel. We then develop a density evolution type analysis on this asymmetric channel. The recursive expression for the bit error probability is derived as a function of the code parameters (node degrees), codeword weight, transmission error rate and the error rates of the permanent and the transient errors. Based on this analysis, we then derive the residual error of the Gallager B decoder for the regime where the transmission error rate and the processing error rates are small. In this regime, we further observe that the residual error can be well approximated by the sum of suitably combined transient errors and permanent errors, provided that the check node degree is large enough. Based on this insight we then propose and analyze a simple scheme for detecting permanent errors. The scheme exploits the parity check equations of the code itself and reuses the existing hardware to locate permanent errors in memory blocks. With high probability, the detection scheme discovers correct locations of permanent memory errors, while, with low probability, it mislabels the functional memory as being defective.

[1]  Ronen Shaltiel,et al.  Invertible Zero-Error Dispersers and Defective Memory with Stuck-At Errors , 2012, APPROX-RANDOM.

[2]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[3]  Lav R. Varshney,et al.  Performance of LDPC Codes Under Faulty Iterative Decoding , 2008, IEEE Transactions on Information Theory.

[4]  Christoph Roth,et al.  Data mapping for unreliable memories , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[5]  Ashish Jagmohan,et al.  Algorithms for memories with stuck cells , 2010, 2010 IEEE International Symposium on Information Theory.

[6]  Lara Dolecek,et al.  Gallager B Decoder on Noisy Hardware , 2013, IEEE Transactions on Communications.

[7]  H. Vincent Poor,et al.  Density evolution for asymmetric memoryless channels , 2005, IEEE Transactions on Information Theory.

[8]  Shashi Kiran Chilappagari,et al.  Analysis of One Step Majority Logic Decoders Constructed From Faulty Gates , 2006, 2006 IEEE International Symposium on Information Theory.

[9]  Chris Winstead,et al.  A Probabilistic LDPC-Coded Fault Compensation Technique for Reliable Nanoscale Computing , 2009, IEEE Transactions on Circuits and Systems II: Express Briefs.

[10]  Frans P. M. Beenker,et al.  A realistic fault model and test algorithms for static random access memories , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[11]  B. Johnson,et al.  Overview of Phase-Change Chalcogenide Nonvolatile Memory Technology , 2004 .

[12]  Lara Dolecek,et al.  Gallager B LDPC Decoder with Transient and Permanent Errors , 2013, IEEE Transactions on Communications.

[13]  Bane V. Vasic,et al.  Analytical Performance of One-Step Majority Logic Decoding of Regular LDPC Codes , 2007, 2007 IEEE International Symposium on Information Theory.

[14]  D. Spielman,et al.  Expander codes , 1996 .

[15]  Shashi Kiran Chilappagari,et al.  An Information Theoretical Framework for Analysis and Design of Nanoscale Fault-Tolerant Memories Based on Low-Density Parity-Check Codes , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[16]  David J. C. MacKay,et al.  Encyclopedia of Sparse Graph Codes , 1999 .

[17]  Naresh R. Shanbhag,et al.  Energy-efficiency bounds for deep submicron VLSI systems in the presence of noise , 2003, IEEE Trans. Very Large Scale Integr. Syst..

[18]  Shashi Kiran Chilappagari,et al.  Instanton-based techniques for analysis and reduction of error floors of LDPC codes , 2009, IEEE Journal on Selected Areas in Communications.

[19]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[20]  Farshad Lahouti,et al.  Performance Analysis of Noisy Message-Passing Decoding of Low-Density Parity-Check Codes , 2010 .

[21]  Chris Heegard Partitioned linear block codes for computer memory with 'stuck-at' defects , 1983, IEEE Trans. Inf. Theory.

[22]  Subhasish Mitra,et al.  Overcoming Early-Life Failure and Aging for Robust Systems , 2009, IEEE Design & Test of Computers.

[23]  Tetsunao Matsuta,et al.  国際会議開催報告:2013 IEEE International Symposium on Information Theory , 2013 .

[24]  François Leduc-Primeau,et al.  Faulty Gallager-B decoding with optimal message repetition , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[25]  Wei Yu,et al.  Complexity-optimized low-density parity-check codes for gallager decoding algorithm B , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[26]  Christoforos N. Hadjicostis,et al.  Coding approaches to fault tolerance in linear dynamic systems , 2005, IEEE Transactions on Information Theory.

[27]  Michael G. Taylor Reliable information storage in memories designed from unreliable components , 1968 .

[28]  Shashi Kiran Chilappagari,et al.  On Trapping Sets and Guaranteed Error Correction Capability of LDPC Codes and GLDPC Codes , 2008, IEEE Transactions on Information Theory.

[29]  Lara Dolecek,et al.  Optimal Design of a Gallager B Noisy Decoder for Irregular LDPC Codes , 2012, IEEE Communications Letters.

[30]  David Declercq,et al.  Min-Sum-based decoders running on noisy hardware , 2013, 2013 IEEE Global Communications Conference (GLOBECOM).

[31]  Ad J. van de Goor,et al.  Using March Tests to Test SRAMs , 1993, IEEE Des. Test Comput..

[32]  B. Vasic,et al.  Fault Tolerant Memories Based on Expander Graphs , 2007, 2007 IEEE Information Theory Workshop.

[33]  Christophe Jégo,et al.  An LDPC decoding method for fault-tolerant digital logic , 2012, 2012 IEEE International Symposium on Circuits and Systems.

[34]  Yervant Zorian,et al.  Built in self repair for embedded high density SRAM , 1998, Proceedings International Test Conference 1998 (IEEE Cat. No.98CH36270).

[35]  J. von Neumann,et al.  Probabilistic Logic and the Synthesis of Reliable Organisms from Unreliable Components , 1956 .

[36]  Shashi Kiran Chilappagari,et al.  On the Construction of Structured LDPC Codes Free of Small Trapping Sets , 2012, IEEE Transactions on Information Theory.

[37]  J.A. Abraham,et al.  Fault-tolerant matrix arithmetic and signal processing on highly concurrent computing structures , 1986, Proceedings of the IEEE.