A Survey on 3D Face Recognition based on Geodesics

With the development of computer vision technology, the research on threedimensional face recognition has been carried out in many aspects and there have been a large number of works on face recognition algorithms and applications. As an important intrinsic geometry structure on the surface, geodesic is becoming an influential mathematical tool of three-dimensional face recognition. After introducing the concept and algorithms of geodesic and 3D face data acquisition and database, this paper elaborates the basic idea and summarizes algorithms of 3D face recognition based on geodesics both in small expression variation with isometric deformation and in large expression variation with non-isometric deformation. At last, the paper points out the future research direction of 3D face recognition. The three-dimensional face recognition method based on geodesics is important to judge the similarity of the face, the public security criminal investigation, the confirmation of kinship and anthropological research. Thus, it has prominent theoretical value and practical significance.

[1]  Wang Chengzhang,et al.  BJUT-3D Large Scale 3D Face Database and Information Processing , 2009 .

[2]  Michael G. Strintzis,et al.  Bilinear Models for 3-D Face and Facial Expression Recognition , 2008, IEEE Transactions on Information Forensics and Security.

[3]  Shi-Qing Xin,et al.  Improving Chen and Han's algorithm on the discrete geodesic problem , 2009, TOGS.

[4]  Remco C. Veltkamp,et al.  3D Face Modeling, Analysis and Recognition , 2013 .

[5]  Faouzi Ghorbel,et al.  3D Face Recognition Using R-ICP and Geodesic Coupled Approach , 2009, MMM.

[6]  Frank B. ter Haar,et al.  SHREC’08 entry: 3D face recognition using facial contour curves , 2008, 2008 IEEE International Conference on Shape Modeling and Applications.

[7]  S. Sridharan,et al.  Face recognition from 3D data using Iterative Closest Point algorithm and Gaussian mixture models , 2004, Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004..

[8]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Zhongke Wu,et al.  3D Facial Similarity Measure Based on Geodesic Network and Curvatures , 2014 .

[10]  Bogdan J. Matuszewski,et al.  3-D Face Recognition Using Geodesic-Map Representation and Statistical Shape Modelling , 2015, ICPRAM.

[11]  Frank B. ter Haar,et al.  SHape REtrieval contest 2008: 3D face scans , 2008, 2008 IEEE International Conference on Shape Modeling and Applications.

[12]  Sushil Gangwar,et al.  A Survey of 3D Face Recognition Methods , 2013 .

[13]  Ying He,et al.  A global algorithm to compute defect-tolerant geodesic distance , 2012, SIGGRAPH Asia Technical Briefs.

[14]  Alan C. Bovik,et al.  Texas 3D Face Recognition Database , 2010, 2010 IEEE Southwest Symposium on Image Analysis & Interpretation (SSIAI).

[15]  Patrick J. Flynn,et al.  Multi-Modal 2D and 3D Biometrics for Face Recognition , 2003, AMFG.

[16]  Alexander M. Bronstein,et al.  Expression-Invariant Representations of Faces , 2007, IEEE Transactions on Image Processing.

[17]  Alan C. Bovik,et al.  Passive Three Dimensional Face Recognition Using Iso-Geodesic Contours and Procrustes Analysis , 2013, International Journal of Computer Vision.

[18]  Joseph O'Rourke,et al.  Shortest Paths on Polyhedral Surfaces , 1985, STACS.

[19]  S. Malassiotis,et al.  Expression-Compensated 3D Face Recognition with Geodesically Aligned Bilinear Models , 2008, 2008 IEEE Second International Conference on Biometrics: Theory, Applications and Systems.

[20]  Said Safi,et al.  Facial Surface Analysis using Iso-Geodesic Curves in Three Dimensional Face Recognition System , 2016, ArXiv.

[21]  Federica Marcolin,et al.  3D face recognition: An automatic strategy based on geometrical descriptors and landmarks , 2014, Robotics Auton. Syst..

[22]  Michael G. Strintzis,et al.  3-D Face Recognition With the Geodesic Polar Representation , 2007, IEEE Transactions on Information Forensics and Security.

[23]  Huibin Li,et al.  Towards three-dimensional face recognition in the real , 2013 .

[24]  Alexander M. Bronstein,et al.  Fusion of 2D and 3D data in three-dimensional face recognition , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[25]  Luuk J. Spreeuwers,et al.  Fast and Accurate 3D Face Recognition , 2011, International Journal of Computer Vision.

[26]  Alberto Del Bimbo,et al.  Analysis and retrieval of 3D facial models using iso-geodesic stripes , 2008, 2008 International Workshop on Content-Based Multimedia Indexing.

[27]  Horst Bunke,et al.  Classifying range images of human faces with Hausdorff distance , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[28]  Alexander M. Bronstein,et al.  Robust Expression-Invariant Face Recognition from Partially Missing Data , 2006, ECCV.

[29]  Alexander M. Bronstein,et al.  Three-Dimensional Face Recognition , 2005, International Journal of Computer Vision.

[30]  Anil K. Jain,et al.  Deformation Modeling for Robust 3D Face Matching , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Alexander M. Bronstein,et al.  Expression-Invariant 3D Face Recognition , 2003, AVBPA.

[32]  A. Bovik,et al.  Three Dimensional Face Recognition Using Iso-Geodesic and Iso-Depth Curves , 2008, 2008 IEEE Second International Conference on Biometrics: Theory, Applications and Systems.

[33]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[34]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[35]  Berk Gökberk,et al.  Regional Registration for Expression Resistant 3-D Face Recognition , 2010, IEEE Transactions on Information Forensics and Security.

[36]  Jae-Chang Shim,et al.  Curvature based human face recognition using depth weighted Hausdorff distance , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[37]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Frank B. ter Haar,et al.  A 3D face matching framework , 2008, 2008 IEEE International Conference on Shape Modeling and Applications.

[39]  Alberto Del Bimbo,et al.  3D Face Recognition Using Isogeodesic Stripes , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Patrick J. Flynn,et al.  A survey of approaches and challenges in 3D and multi-modal 3D + 2D face recognition , 2006, Comput. Vis. Image Underst..

[41]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[42]  Joseph S. B. Mitchell,et al.  The Discrete Geodesic Problem , 1987, SIAM J. Comput..

[43]  Patrick J. Flynn,et al.  Multiple Nose Region Matching for 3D Face Recognition under Varying Facial Expression , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Alexander M. Bronstein,et al.  Numerical Geometry of Non-Rigid Shapes , 2009, Monographs in Computer Science.

[45]  Micha Sharir,et al.  On shortest paths in polyhedral spaces , 1986, STOC '84.

[46]  Jun Wang,et al.  A 3D facial expression database for facial behavior research , 2006, 7th International Conference on Automatic Face and Gesture Recognition (FGR06).

[47]  武仲科 Wu Zhong-ke,et al.  3D facial similarity comparison in shape space , 2015 .

[48]  Shi-Qing Xin,et al.  Parallel chen-han (PCH) algorithm for discrete geodesics , 2013, ACM Trans. Graph..

[49]  L. Akarun,et al.  A 3D Face Recognition System for Expression and Occlusion Invariance , 2008, 2008 IEEE Second International Conference on Biometrics: Theory, Applications and Systems.

[50]  Alexander M. Bronstein,et al.  Face Recognition from Facial Surface Metric , 2004, ECCV.

[51]  Ying He,et al.  Saddle vertex graph (SVG) , 2013, ACM Trans. Graph..

[52]  Zhongke Wu,et al.  A Iso-Geodesic Stripes based similarity measure method for 3D face , 2011, 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI).

[53]  Ioannis A. Kakadiaris,et al.  Three-Dimensional Face Recognition in the Presence of Facial Expressions: An Annotated Deformable Model Approach , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[54]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[55]  Mohsen Ardabilian,et al.  3D Face Modeling , 2013 .

[56]  Patrick J. Flynn,et al.  A Region Ensemble for 3-D Face Recognition , 2008, IEEE Transactions on Information Forensics and Security.

[57]  Rachid Ahdid,et al.  Three Dimensional Face Surfaces Analysis using Geodesic Distance , 2015 .

[58]  Alberto Del Bimbo,et al.  Description and retrieval of 3D face models using iso-geodesic stripes , 2006, MIR '06.

[59]  Alberto Del Bimbo,et al.  Weighted walkthroughs between extended entities for retrieval by spatial arrangement , 2003, IEEE Trans. Multim..