Shaped Beam Pattern Synthesis of Antenna Arrays Using Composite Differential Evolution with Eigenvector-Based Crossover Operator

This paper addresses the problem of designing shaped beam patterns with arbitrary arrays subject to constraints. The constraints could include the sidelobe level suppression in specified angular intervals, the mainlobe halfpower beamwidth, and the predefined number of elements. In this paper, we propose a new Differential Evolution algorithm, which combines Composite DE with an eigenvector-based crossover operator (CODE-EIG). This operator utilizes eigenvectors of covariance matrix of individual solutions, which makes the crossover rotationally invariant. We apply this novel design method to shaped beam pattern synthesis for linear and conformal arrays. We compare this algorithm with other popular algorithms and DE variants. The results show CODE-EIG outperforms the other DE algorithms in terms of statistical results and convergence speed.

[1]  Shiyou Yang,et al.  Multiobjective Synthesis of Antenna Arrays Using a Vector Tabu Search Algorithm , 2009, IEEE Antennas and Wireless Propagation Letters.

[2]  Tommaso Isernia,et al.  A hybrid approach for the optimal synthesis of pencil beams through array antennas , 2004 .

[3]  Shu-Mei Guo,et al.  Enhancing Differential Evolution Utilizing Eigenvector-Based Crossover Operator , 2015, IEEE Transactions on Evolutionary Computation.

[4]  M. J. Buckley,et al.  Synthesis of shaped beam antenna patterns using implicitly constrained current elements , 1996 .

[5]  John N. Sahalos,et al.  A Multi-objective approach to Subarrayed Linear Antenna Arrays Design , 2011 .

[6]  Qingfu Zhang,et al.  Differential Evolution With Composite Trial Vector Generation Strategies and Control Parameters , 2011, IEEE Transactions on Evolutionary Computation.

[7]  J. A. Ferreira,et al.  Pattern synthesis of conformal arrays by the simulated annealing technique , 1997 .

[8]  A. Rydberg,et al.  Synthesis of uniform amplitude unequally spaced antenna arrays using the differential evolution algorithm , 2003 .

[9]  J. N. Sahalos,et al.  A Multi-Objective Approach to Subarrayed Linear Antenna Arrays Design Based on Memetic Differential Evolution , 2013, IEEE Transactions on Antennas and Propagation.

[10]  Tommaso Isernia,et al.  Shaped Beam Antenna Synthesis Problems: Feasibility Criteria and New Strategies , 1998 .

[11]  J.J. Rodriguez,et al.  Design of Low-Sidelobe Linear Arrays With High Aperture Efficiency and Interference Nulls , 2009, IEEE Antennas and Wireless Propagation Letters.

[12]  K. Siakavara,et al.  Application of a Comprehensive Learning Particle Swarm Optimizer to Unequally Spaced Linear Array Synthesis With Sidelobe Level Suppression and Null Control , 2010, IEEE Antennas and Wireless Propagation Letters.

[13]  Dervis Karaboga,et al.  Touring Ant Colony Optimization Algorithm for Shaped-Beam Pattern Synthesis of Linear Antenna , 2006 .

[14]  T. Samaras,et al.  Self-Adaptive Differential Evolution Applied to Real-Valued Antenna and Microwave Design Problems , 2011, IEEE Transactions on Antennas and Propagation.

[15]  Randy L. Haupt,et al.  Thinned arrays using genetic algorithms , 1993, Proceedings of IEEE Antennas and Propagation Society International Symposium.

[16]  Carlos A. Coello Coello,et al.  A comparative study of differential evolution variants for global optimization , 2006, GECCO.

[17]  M. Clerc,et al.  The swarm and the queen: towards a deterministic and adaptive particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[18]  Rainer Storn,et al.  Differential Evolution Research – Trends and Open Questions , 2008 .

[19]  J. N. Sahalos,et al.  Sparse Linear Array Synthesis With Multiple Constraints Using Differential Evolution With Strategy Adaptation , 2011, IEEE Antennas and Wireless Propagation Letters.

[20]  C. Christodoulou,et al.  Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization , 2005, IEEE Transactions on Antennas and Propagation.

[21]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[22]  Xiaodong Li,et al.  Solving Rotated Multi-objective Optimization Problems Using Differential Evolution , 2004, Australian Conference on Artificial Intelligence.

[23]  J. Hooker,et al.  Optimal Thinning Levels in Linear Arrays , 2010, IEEE Antennas and Wireless Propagation Letters.

[24]  Anup Kumar Bhattacharjee,et al.  Design of Fully Digital Controlled Shaped Beam Synthesis Using Differential Evolution Algorithm , 2013 .

[25]  James Demmel,et al.  Jacobi's Method is More Accurate than QR , 1989, SIAM J. Matrix Anal. Appl..

[26]  R. Haupt,et al.  Optimized Weighting of Uniform Subarrays of Unequal Sizes , 2007, IEEE Transactions on Antennas and Propagation.

[27]  Kerim Guney,et al.  Shaped‐beam pattern synthesis of equally and unequally spaced linear antenna arrays using a modified tabu search algorithm , 2003 .

[28]  S. L. Ho,et al.  Multiobjective Optimization of Inverse Problems Using a Vector Cross Entropy Method , 2012, IEEE Transactions on Magnetics.

[29]  Benjamin Fuchs,et al.  Shaped Beam Synthesis of Arbitrary Arrays via Linear Programming , 2010, IEEE Antennas and Wireless Propagation Letters.