Auxiliary Variable Based Particle Filters

We model a time series {y t , t = 1, ..., n} using a state-space framework with the {y t |α t } being independent and with the state {α t } assumed to be Markovian. The task will be to use simulation to estimate f(α t |F t ), t = 1, ..., n, where F t is contemporaneously available information. We assume a known measurement density f(y t |α t ) and the ability to simulate from the transition density f(α t+1|α t ). Sometimes we will also assume that we can evaluate f(α t+1|α t ).

[1]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[2]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[3]  Nicholas I. Fisher,et al.  Statistical Analysis of Circular Data , 1993 .

[4]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[5]  Enrique Sentana,et al.  Volatiltiy and Links between National Stock Markets , 1990 .

[6]  Jun S. Liu,et al.  Sequential Imputations and Bayesian Missing Data Problems , 1994 .

[7]  M. Pitt,et al.  Likelihood analysis of non-Gaussian measurement time series , 1997 .

[8]  Michael Isard,et al.  Contour Tracking by Stochastic Propagation of Conditional Density , 1996, ECCV.

[9]  G. Kitagawa Non-Gaussian state space modeling of time series , 1987, 26th IEEE Conference on Decision and Control.

[10]  M. West,et al.  Bayesian forecasting and dynamic models , 1989 .

[11]  R. Kohn,et al.  Diagnostics for Time Series Analysis , 1999 .

[12]  P. Fearnhead,et al.  An improved particle filter for non-linear problems , 1999 .

[13]  N. Shephard Partial non-Gaussian state space , 1994 .

[14]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[15]  Jun S. Liu,et al.  Blind Deconvolution via Sequential Imputations , 1995 .

[16]  Peter E. Rossi,et al.  Bayesian Analysis of Stochastic Volatility Models , 1994 .

[17]  R. Kohn,et al.  On Gibbs sampling for state space models , 1994 .

[18]  Jun S. Liu,et al.  Metropolized independent sampling with comparisons to rejection sampling and importance sampling , 1996, Stat. Comput..

[19]  F. Diebold,et al.  The dynamics of exchange rate volatility: a multivariate latent factor ARCH model , 1986 .

[20]  M. Pitt,et al.  Time Varying Covariances: A Factor Stochastic Volatility Approach (with discussion , 1998 .

[21]  Alan E. Gelfand,et al.  Bayesian statistics without tears: A sampling-resampling perspective , 1992 .

[22]  Michael A. West Mixture Models, Monte Carlo, Bayesian Updating and Dynamic Models , 1992 .

[23]  N. G. Best,et al.  Dynamic conditional independence models and Markov chain Monte Carlo methods , 1997 .

[24]  A. Harvey,et al.  Unobserved component time series models with Arch disturbances , 1992 .

[25]  Enrique Sentana,et al.  Volatiltiy and Links between National Stock Markets , 1990 .

[26]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[27]  N. Shephard,et al.  Stochastic Volatility: Likelihood Inference And Comparison With Arch Models , 1996 .