Bicliques and Eigenvalues

A biclique in a graph ? is a complete bipartite subgraph of ?. We give bounds for the maximum number of edges in a biclique in terms of the eigenvalues of matrix representations of ?. These bounds show a strong similarity with Lovasz's bound ?(?) for the Shannon capacity of ?. Motivated by this similarity we investigate bicliques and the bounds in certain product graphs.

[1]  Willem H. Haemers,et al.  Disconnected Vertex Sets and Equidistant Code Pairs , 1997, Electron. J. Comb..

[2]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[3]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[4]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[5]  W. Haemers Interlacing eigenvalues and graphs , 1995 .

[6]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[7]  László Lovász,et al.  Algorithmic theory of numbers, graphs and convexity , 1986, CBMS-NSF regional conference series in applied mathematics.

[8]  David S. Johnson,et al.  The NP-Completeness Column: An Ongoing Guide , 1982, J. Algorithms.

[9]  Dmitrii V. Pasechnik,et al.  Bipartite sandwiches: bounding the size of a maximum biclique , 1999, math/9907109.

[10]  Claude E. Shannon,et al.  The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.

[11]  René Peeters,et al.  The maximum edge biclique problem is NP-complete , 2003, Discret. Appl. Math..

[12]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.