Mixed effect modelling and variable selection for quantile regression
暂无分享,去创建一个
Martin T. Wells | Haim Bar | James Booth | J. Booth | M. Wells | H. Bar
[1] D. Bates,et al. Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.
[2] Hong Zhang,et al. Targeting multiple signal transduction pathways through inhibition of Hsp90 , 2004, Journal of Molecular Medicine.
[3] G. Casella,et al. The Bayesian Lasso , 2008 .
[4] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[5] T. J. Mitchell,et al. Bayesian Variable Selection in Linear Regression , 1988 .
[6] C. E. Galarza,et al. Quantile regression in linear mixed models: a stochastic approximation EM approach. , 2017, Statistics and its interface.
[7] Marco Geraci,et al. Linear quantile mixed models , 2013, Statistics and Computing.
[8] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[9] Jian Huang,et al. Semismooth Newton Coordinate Descent Algorithm for Elastic-Net Penalized Huber Loss Regression and Quantile Regression , 2015, 1509.02957.
[10] A. Belloni,et al. L1-Penalized Quantile Regression in High Dimensional Sparse Models , 2009, 0904.2931.
[11] B. Silverman,et al. Functional Data Analysis , 1997 .
[12] Ruibin Xi,et al. Bayesian regularized quantile regression , 2010 .
[13] A. Belloni,et al. Quantile graphical models: prediction and conditional independence with applications to systemic risk , 2016, 1607.00286.
[14] Cun-Hui Zhang. Nearly unbiased variable selection under minimax concave penalty , 2010, 1002.4734.
[15] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[16] D. Bates,et al. Mixed-Effects Models in S and S-PLUS , 2001 .
[17] Density estimation in R , 2014 .
[18] Sumanta Basu,et al. Learning Financial Networks using Quantile Granger Causality , 2018, DSMM@SIGMOD.
[19] Keming Yu,et al. Bayesian quantile regression , 2001 .
[20] Yusuke Nakamura,et al. Identification of COX17 as a therapeutic target for non-small cell lung cancer. , 2003, Cancer research.
[21] Bernard W. Silverman,et al. Functional Data Analysis , 1997 .
[22] H. Kozumi,et al. Gibbs sampling methods for Bayesian quantile regression , 2011 .
[23] William J. Byrne,et al. Convergence Theorems for Generalized Alternating Minimization Procedures , 2005, J. Mach. Learn. Res..
[24] Karl J. Friston,et al. Variance Components , 2003 .
[25] V. Carey,et al. Mixed-Effects Models in S and S-Plus , 2001 .
[26] I. Johnstone,et al. Needles and straw in haystacks: Empirical Bayes estimates of possibly sparse sequences , 2004, math/0410088.
[27] M. Bottai,et al. Quantile regression for longitudinal data using the asymmetric Laplace distribution. , 2007, Biostatistics.
[28] Peter Bühlmann,et al. High-Dimensional Statistics with a View Toward Applications in Biology , 2014 .
[29] Ivano Bertini,et al. Mitochondrial copper(I) transfer from Cox17 to Sco1 is coupled to electron transfer , 2008, Proceedings of the National Academy of Sciences.
[30] J. Zico Kolter,et al. The Multiple Quantile Graphical Model , 2016, NIPS.
[31] A. Kottas,et al. A Bayesian Nonparametric Approach to Inference for Quantile Regression , 2010 .
[32] V. H. L. Dávila,et al. Robust quantile regression using a generalized class of skewed distributions , 2017 .
[33] M. Wells,et al. GENERALIZED THRESHOLDING ESTIMATORS FOR HIGH-DIMENSIONAL LOCATION PARAMETERS , 2010 .
[34] M. Bottai,et al. A penalized approach to covariate selection through quantile regression coefficient models , 2020, Statistical Modelling.
[35] A. V. D. Vaart,et al. Needles and Straw in a Haystack: Posterior concentration for possibly sparse sequences , 2012, 1211.1197.
[36] D. Ruppert,et al. Trimmed Least Squares Estimation in the Linear Model , 1980 .
[37] Liang Chen,et al. Quantile Factor Models , 2017, Econometrica.
[38] Christopher J. Chang,et al. A targetable fluorescent sensor reveals that copper-deficient SCO1 and SCO2 patient cells prioritize mitochondrial copper homeostasis. , 2011, Journal of the American Chemical Society.
[39] Dorothy T. Thayer,et al. EM algorithms for ML factor analysis , 1982 .
[40] N. Meinshausen,et al. High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.
[41] Jianqing Fan,et al. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .
[42] K. Yamamoto,et al. Disassembly of Transcriptional Regulatory Complexes by Molecular Chaperones , 2002, Science.
[43] J. Myung,et al. Expressional patterns of chaperones in ten human tumor cell lines , 2004, Proteome Science.
[44] Ying-hui Zhou,et al. Quantile Regression via the EM Algorithm , 2014, Commun. Stat. Simul. Comput..
[45] M. Wand. Functions for Kernel Smoothing Supporting Wand & Jones (1995) , 2015 .
[46] D. Hunter,et al. Quantile Regression via an MM Algorithm , 2000 .
[47] R. Koenker. Quantile regression for longitudinal data , 2004 .
[48] R. Koenker. Confidence Intervals for Regression Quantiles , 1994 .
[49] Martin T. Wells,et al. A Scalable Empirical Bayes Approach to Variable Selection , 2015, 1510.03781.
[50] J. S. Rao,et al. Spike and slab variable selection: Frequentist and Bayesian strategies , 2005, math/0505633.