Single-qubit-gate error below 10 -4 in a trapped ion

With a {sup 9}Be{sup +} trapped-ion hyperfine-state qubit, we demonstrate an error probability per randomized single-qubit gate of 2.0(2)x10{sup -5}, below the threshold estimate of 10{sup -4} commonly considered sufficient for fault-tolerant quantum computing. The {sup 9}Be{sup +} ion is trapped above a microfabricated surface-electrode ion trap and is manipulated with microwaves applied to a trap electrode. The achievement of low single-qubit-gate errors is an essential step toward the construction of a scalable quantum computer.

[1]  P. Zoller,et al.  Complete Characterization of a Quantum Process: The Two-Bit Quantum Gate , 1996, quant-ph/9611013.

[2]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[3]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[4]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[5]  M D Barrett,et al.  Enhanced quantum state detection efficiency through quantum information processing. , 2005, Physical review letters.

[6]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[7]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[8]  R. B. Blakestad,et al.  Microfabricated surface-electrode ion trap for scalable quantum information processing. , 2006, Physical review letters.

[9]  C. Monroe,et al.  Scaling and suppression of anomalous heating in ion traps. , 2006, Physical review letters.

[10]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[11]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[12]  J M Amini,et al.  Trapped-ion quantum logic gates based on oscillating magnetic fields. , 2008, Physical review letters.

[13]  David Leibrandt,et al.  Suppression of heating rates in cryogenic surface-electrode ion traps. , 2007, Physical review letters.

[14]  Michael J. Biercuk,et al.  High-fidelity quantum control using ion crystals in a penning trap , 2009, Quantum Inf. Comput..

[15]  R. Laflamme,et al.  Randomized benchmarking of single- and multi-qubit control in liquid-state NMR quantum information processing , 2008, 0808.3973.

[16]  S. Olmschenk,et al.  Randomized benchmarking of atomic qubits in an optical lattice , 2010, 1008.2790.

[17]  Emanuel Knill,et al.  Physics: Quantum computing , 2010, Nature.

[18]  Luigi Frunzio,et al.  Optimized driving of superconducting artificial atoms for improved single-qubit gates , 2010 .

[19]  K. Brown,et al.  Coupled quantized mechanical oscillators , 2010, Nature.