12 Grand Challenges in Single-Cell Data Science

David Lähnemann*,1,2,3, Johannes Köster*,+,1,4, Ewa Szczurek*,5, Davis J. McCarthy*,6,7, Stephanie C. Hicks*,8, Mark D. Robinson*,9, Catalina A. Vallejos*,10,11, Niko Beerenwinkel*,12,13, Kieran R. Campbell*,15,16,17, Ahmed Mahfouz*,18,19, Luca Pinello*,20,21,22, Pavel Skums*,23, Alexandros Stamatakis*,24,25, Camille Stephan-Otto Attolini*,26, Samuel Aparicio16,27, Jasmijn Baaijens29, Marleen Balvert29,31, Buys de Barbanson32,33,34, Antonio Cappuccio35, Giacomo Corleone36, Bas E. Dutilh31,38, Maria Florescu32,33,34, Victor Guryev41, Rens Holmer42, Katharina Jahn12,13, Thamar Jessurun Lobo41, Emma M. Keizer45, Indu Khatri46, Szymon M. Kiełbasa47, Jan O. Korbel48, Alexey M. Kozlov24, Tzu-Hao Kuo3, Boudewijn P.F. Lelieveldt49,50, Ion I. Mandoiu51, John C. Marioni52,53,54, Tobias Marschall55,56, Felix Mölder1,59, Amir Niknejad60,61, Łukasz Rączkowski5, Marcel Reinders18,19, Jeroen de Ridder32,33, Antoine-Emmanuel Saliba62, Antonios Somarakis50, Oliver Stegle48,54,63, Fabian J. Theis67, Huan Yang68, Alex Zelikovsky69,70, Alice C. McHardy+,3, Benjamin J. Raphael+,71, Sohrab P. Shah+,72, and Alexander Schönhuth@,+,*,29,31

[1]  Alice Carolyn McHardy,et al.  Allele dynamics plots for the study of evolutionary dynamics in viral populations , 2010, Nucleic Acids Res..

[2]  Michael I. Jordan,et al.  Deep Generative Modeling for Single-cell Transcriptomics , 2018, Nature Methods.

[3]  Mark D. Robinson,et al.  Comparison of Clustering Methods for High-Dimensional Single-Cell Flow and Mass Cytometry Data , 2016, bioRxiv.

[4]  Elmar Eisemann,et al.  Hierarchical Stochastic Neighbor Embedding , 2016, Comput. Graph. Forum.

[5]  Sébastien Roch,et al.  A short proof that phylogenetic tree reconstruction by maximum likelihood is hard , 2005, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[6]  Alexander van Oudenaarden,et al.  Spatially resolved transcriptomics and beyond , 2014, Nature Reviews Genetics.

[7]  Pavel Skums,et al.  Inference of clonal selection in cancer populations using single-cell sequencing data , 2019, Bioinform..

[8]  Sanghamitra Bandyopadhyay,et al.  dropClust: Efficient clustering of ultra-large scRNA-seq data , 2017 .

[9]  Erik Sundström,et al.  RNA velocity of single cells , 2018, Nature.

[10]  W. Koh,et al.  Single-cell genome sequencing: current state of the science , 2016, Nature Reviews Genetics.

[11]  Luyi Tian,et al.  Benchmarking single cell RNA-sequencing analysis pipelines using mixture control experiments , 2019, Nature Methods.

[12]  Ziheng Yang Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods , 1994, Journal of Molecular Evolution.

[13]  Sean C. Bendall,et al.  Multiplexed ion beam imaging of human breast tumors , 2014, Nature Medicine.

[14]  Rameen Beroukhim,et al.  Genome coverage and sequence fidelity of phi29 polymerase-based multiple strand displacement whole genome amplification. , 2004, Nucleic acids research.

[15]  Julian Gough,et al.  DGEclust: differential expression analysis of clustered count data , 2014, Genome Biology.

[16]  M. Junttila,et al.  Influence of tumour micro-environment heterogeneity on therapeutic response , 2013, Nature.

[17]  Minseok Kwon,et al.  Linked-read analysis identifies mutations in single-cell DNA-sequencing data , 2019, Nature Genetics.

[18]  Nimrod D. Rubinstein,et al.  Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region , 2018, Science.

[19]  M. Nowak,et al.  Dynamics of cancer progression , 2004, Nature Reviews Cancer.

[20]  Ian Holmes,et al.  Solving the master equation for Indels , 2017, BMC Bioinformatics.

[21]  L. Pelkmans,et al.  Control of Transcript Variability in Single Mammalian Cells , 2015, Cell.