Near-global GPS-derived PWV and its analysis in the El Niño event of 2014–2016

Abstract Precipitable water vapour (PWV) is a key factor in activities related to climate monitoring and the global hydrologic cycle. In this paper, the PWV time series with an accuracy of about 1.3 mm is obtained on a global scale using the zenith total delay (ZTD) derived from International GNSS Service (IGS). A theoretical error formula from ZTD to PWV reveals that the PWV error induced by errors in ZTD, surface pressure (Ps) and weighted mean temperature (Tm) is about 1–1.5 mm. Ps and Tm are two key factors during the conversion of ZTD to PWV, which can be derived from the Global Geodetic Observing System (GGOS) Atmosphere. The GPS-derived and radiosonde-derived PWV time series are compared at 97 collocated stations on a global scale, which shows the maximum/minimum/mean root mean square (RMS) errors and Bias of 1.8/0.6/1.3 mm and 2.6/2.9/4.0/5.2 mm, respectively with a data utilisation rate of 96.8%. By analysing the periodograms of GPS-derived PWV time series using the Lomb-Scargle method, preliminary result shows the various oscillations characteristics of PWV time series at different stations. Finally, the diurnal variations of PWV time series during the El Nino event of 2014–2016 are analysed and revealed an interesting climate signal.

[1]  Steven Businger,et al.  GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water , 1994 .

[2]  Galina Dick,et al.  The rapid and precise computation of GPS slant total delays and mapping factors utilizing a numerical weather model , 2014 .

[3]  Ying-Hwa Kuo,et al.  Comparison of GPS radio occultation soundings with radiosondes , 2005 .

[4]  Fujio Kimura,et al.  Diurnal Variation of Precipitable Water over a Mountainous Area of Sumatra Island , 2003 .

[5]  R. Haas,et al.  An inter-comparison study to estimate zenith wet delays using VLBI, GPS, and NWP models , 2000 .

[6]  Zofia Baldysz,et al.  Assessment of the Impact of GNSS Processing Strategies on the Long-Term Parameters of 20 Years IWV Time Series , 2018, Remote. Sens..

[7]  Kevin E. Trenberth,et al.  Trends and variability in column-integrated atmospheric water vapor , 2005 .

[8]  Harald Schuh,et al.  GPS derived Zenith Total Delay (ZTD) observed at tropical locations in South India during atmospheric storms and depressions , 2015 .

[9]  Nazzareno Pierdicca,et al.  Mapping the atmospheric water vapor by integrating microwave radiometer and GPS measurements , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Tobias Nilsson,et al.  Water vapor tomography using GPS phase observations: simulation results , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Paul Tregoning,et al.  Accuracy of absolute precipitable water vapor estimates from GPS observations , 1998 .

[12]  K. Hocke Phase estimation with the Lomb-Scargle periodogram method , 1998 .

[13]  Dorota A. Grejner-Brzezinska,et al.  GPS-PWV estimation and validation with radiosonde data and numerical weather prediction model in Antarctica , 2012, GPS Solutions.

[14]  Shuanggen Jin,et al.  Variability and Climatology of PWV From Global 13-Year GPS Observations , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[15]  I. Shapiro,et al.  Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length , 1985 .

[16]  Dian J. Seidel,et al.  Global radiosonde balloon drift statistics , 2011 .

[17]  Yingyan Cheng,et al.  Water vapor‐weighted mean temperature and its impact on the determination of precipitable water vapor and its linear trend , 2016 .

[18]  Galina Dick,et al.  The uncertainty of the atmospheric integrated water vapour estimated from GNSS observations , 2015 .

[19]  J. F. Maia,et al.  GNSS Precipitable Water Vapor from an Amazonian Rain Forest Flux Tower , 2011 .

[20]  Jan Dousa,et al.  An improved model for calculating tropospheric wet delay , 2014 .

[21]  W. Elliott,et al.  Radiosonde-Based Northern Hemisphere Tropospheric Water Vapor Trends , 2001 .

[22]  Junhong Wang,et al.  Global estimates of water‐vapor‐weighted mean temperature of the atmosphere for GPS applications , 2005 .

[23]  K. Szafranek,et al.  Investigation of the 16-year and 18-year ZTD Time Series Derived from GPS Data Processing , 2015, Acta Geophysica.

[24]  Junhong Wang,et al.  A near-global, 2-hourly data set of atmospheric precipitable water from ground-based GPS measurements , 2007 .

[25]  G. Smith,et al.  Further Study on Atmospheric Lapse Rate Regimes , 1985 .

[26]  Gunnar Elgered,et al.  Geodesy by radio interferometry - Water vapor radiometry for estimation of the wet delay , 1991 .

[27]  Russell S. Vose,et al.  Overview of the Integrated Global Radiosonde Archive , 2006 .

[28]  T. Humphreys,et al.  The semidiurnal variation in GPS‐derived zenith neutral delay , 2005 .

[29]  Shuanggen Jin,et al.  Seasonal variability of GPS‐derived zenith tropospheric delay (1994–2006) and climate implications , 2007 .

[30]  Thomas A. Herring,et al.  Impact of a priori zenith hydrostatic delay errors on GPS estimates of station heights and zenith total delays , 2006 .

[31]  Sung H. Byun,et al.  A new type of troposphere zenith path delay product of the international GNSS service , 2009 .

[32]  J. Saastamoinen Atmospheric Correction for the Troposphere and Stratosphere in Radio Ranging Satellites , 2013 .

[33]  Ying-Hwa Kuo,et al.  Global Evaluation of Radiosonde Water Vapor Systematic Biases using GPS Radio Occultation from COSMIC and ECMWF Analysis , 2010, Remote. Sens..

[34]  Gerd Gendt,et al.  The New Tropospheric Product of the International GNSS Service , 2005 .

[35]  Junhong Wang,et al.  Diurnal variation in water vapor over North America and its implications for sampling errors in radiosonde humidity , 2002 .

[36]  Jan Askne,et al.  Estimation of tropospheric delay for microwaves from surface weather data , 1987 .

[37]  W. Elliott,et al.  Tropospheric Water Vapor Climatology and Trends over North America: 1973–93 , 1996 .

[38]  T. Herring,et al.  GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System , 1992 .

[39]  T. Barnett,et al.  Space and Time Scales of Global Tropospheric Moisture , 1991 .

[40]  Richard B. Langley,et al.  Comparison of Measurements of Atmospheric Wet Delay by Radiosonde, Water Vapor Radiometer, GPS, and VLBI , 2001 .

[41]  Ying-Hwa Kuo,et al.  Assimilation of Precipitable Water Measurements into a Mesoscale Numerical Model , 1993 .

[42]  Bo-Cai Gao,et al.  A global water vapor data set obtained by merging the SSMI and MODIS data , 2004 .

[43]  Jaume Sanz,et al.  A new strategy for real‐time integrated water vapor determination in WADGPS Networks , 2001 .

[44]  R. Haas,et al.  Multi-technique comparison of tropospheric zenith delays derived during the CONT02 campaign , 2006 .

[45]  Gerd Gendt,et al.  On the determination of atmospheric water vapor from GPS measurements , 2003 .

[46]  Jan M. Johansson,et al.  Measuring regional atmospheric water vapor using the Swedish Permanent GPS Network , 1997 .

[47]  N. K. Pavlis,et al.  The development and evaluation of the Earth Gravitational Model 2008 (EGM2008) , 2012 .