A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching

[1]  Wei Liu,et al.  Strigolactone Biosynthesis in Medicago truncatula and Rice Requires the Symbiotic GRAS-Type Transcription Factors NSP1 and NSP2[W][OA] , 2011, Plant Cell.

[2]  Ottoline Leyser,et al.  Signal integration in the control of shoot branching , 2011, Nature Reviews Molecular Cell Biology.

[3]  M. Hanlon,et al.  Genetic evidence for auxin involvement in arbuscular mycorrhiza initiation. , 2011, The New phytologist.

[4]  O. Leyser,et al.  Strigolactones Are Transported through the Xylem and Play a Key Role in Shoot Architectural Response to Phosphate Deficiency in Nonarbuscular Mycorrhizal Host Arabidopsis1[C][W][OA] , 2010, Plant Physiology.

[5]  H. Bouwmeester,et al.  Physiological Effects of the Synthetic Strigolactone Analog GR24 on Root System Architecture in Arabidopsis: Another Belowground Role for Strigolactones?1[C][W][OA] , 2010, Plant Physiology.

[6]  Rajasekhara Reddy Duvvuru Muni,et al.  The PAM1 gene of petunia, required for intracellular accommodation and morphogenesis of arbuscular mycorrhizal fungi, encodes a homologue of VAPYRIN. , 2010, The Plant journal : for cell and molecular biology.

[7]  O. Leyser,et al.  Strigolactones enhance competition between shoot branches by dampening auxin transport , 2010, Development.

[8]  J. Yoder,et al.  Host plant resistance to parasitic weeds; recent progress and bottlenecks. , 2010, Current opinion in plant biology.

[9]  M. J. Harrison,et al.  Two Medicago truncatula Half-ABC Transporters Are Essential for Arbuscule Development in Arbuscular Mycorrhizal Symbiosis[W] , 2010, Plant Cell.

[10]  C. Beveridge,et al.  New genes in the strigolactone-related shoot branching pathway. , 2010, Current opinion in plant biology.

[11]  S. Assmann,et al.  PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid , 2010, Proceedings of the National Academy of Sciences.

[12]  T. Kuromori,et al.  ABC transporter AtABCG25 is involved in abscisic acid transport and responses , 2010, Proceedings of the National Academy of Sciences.

[13]  K. Yoneyama,et al.  Feedback-Regulation of Strigolactone Biosynthetic Genes and Strigolactone-Regulated Genes in Arabidopsis , 2009, Bioscience, biotechnology, and biochemistry.

[14]  Robert Verpoorte,et al.  An ABC Transporter Mutation Alters Root Exudation of Phytochemicals That Provoke an Overhaul of Natural Soil Microbiota1[C][W][OA] , 2009, Plant Physiology.

[15]  Jan Petrásek,et al.  Auxin transport routes in plant development , 2009, Development.

[16]  C. Beveridge,et al.  Interactions between Auxin and Strigolactone in Shoot Branching Control1[C][OA] , 2009, Plant Physiology.

[17]  Philip B Brewer,et al.  Strigolactone Acts Downstream of Auxin to Regulate Bud Outgrowth in Pea and Arabidopsis1[C][OA] , 2009, Plant Physiology.

[18]  A. Gerats,et al.  Petunia hybrida , 2022, Plant Molecular Biology Reporter.

[19]  R. Koide,et al.  Can hypodermal passage cell distribution limit root penetration by mycorrhizal fungi? , 2008, The New phytologist.

[20]  Martin Parniske,et al.  Arbuscular mycorrhiza: the mother of plant root endosymbioses , 2008, Nature Reviews Microbiology.

[21]  A. Moons Transcriptional profiling of the PDR gene family in rice roots in response to plant growth regulators, redox perturbations and weak organic acid stresses , 2008, Planta.

[22]  Jean-Charles Portais,et al.  Strigolactone inhibition of shoot branching , 2008, Nature.

[23]  Y. Kamiya,et al.  Inhibition of shoot branching by new terpenoid plant hormones , 2008, Nature.

[24]  I. Nakamura,et al.  Molecular Evidence for Progenitorial Species of Garden Petunias Using Polymerase Chain Reaction : Restriction Fragment Length Polymorphism Analysis of the Chs-j Gene , 2008 .

[25]  P. A. Rea,et al.  Plant ABC proteins--a unified nomenclature and updated inventory. , 2008, Trends in plant science.

[26]  A. Sugiyama,et al.  Signaling from soybean roots to Rhizobium , 2008, Plant signaling & behavior.

[27]  M. Schorderet,et al.  A petunia mutant affected in intracellular accommodation and morphogenesis of arbuscular mycorrhizal fungi. , 2007, The Plant journal : for cell and molecular biology.

[28]  J. Gray,et al.  A rapid and robust method of identifying transformed Arabidopsis thaliana seedlings following floral dip transformation , 2006, Plant Methods.

[29]  Andreas J. Meyer,et al.  AtGAT1, a High Affinity Transporter for γ-Aminobutyric Acid in Arabidopsis thaliana* , 2006, Journal of Biological Chemistry.

[30]  W. K. Lutke Petunia (Petunia hybrida). , 2006, Methods in molecular biology.

[31]  Feng Chen,et al.  Statistical analysis of real-time PCR data , 2006, BMC Bioinformatics.

[32]  H. Bouwmeester,et al.  The Strigolactone Germination Stimulants of the Plant-Parasitic Striga and Orobanche spp. Are Derived from the Carotenoid Pathway1 , 2005, Plant Physiology.

[33]  K. Akiyama,et al.  Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi , 2005, Nature.

[34]  Joanne L. Simons,et al.  The Decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 Gene Affects Branch Production and Plays a Role in Leaf Senescence, Root Growth, and Flower Development , 2005, The Plant Cell Online.

[35]  M. Cervera Histochemical and fluorometric assays for uidA (GUS) gene detection. , 2005, Methods in molecular biology.

[36]  Masami Ikeda,et al.  ConPred II: a consensus prediction method for obtaining transmembrane topology models with high reliability , 2004, Nucleic Acids Res..

[37]  R. Hellens,et al.  pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation , 2000, Plant Molecular Biology.

[38]  J. Schell,et al.  New plant binary vectors with selectable markers located proximal to the left T-DNA border , 1992, Plant Molecular Biology.

[39]  M. Vandenbussche,et al.  TE-based mutagenesis systems in plants: a gene family approach. , 2004, Methods in molecular biology.

[40]  C. Napoli,et al.  A quantitative study of lateral branching in petunia. , 2003, Functional plant biology : FPB.

[41]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[42]  P. Waterhouse,et al.  Construct design for efficient, effective and high-throughput gene silencing in plants. , 2001, The Plant journal : for cell and molecular biology.

[43]  B. Purnelle,et al.  A Plant Plasma Membrane ATP Binding Cassette–Type Transporter Is Involved in Antifungal Terpenoid Secretion , 2001, Plant Cell.

[44]  D. Douds,et al.  Rapid and sensitive bioassay to study signals between root exudates and arbuscular mycorrhizal fungi , 1999 .

[45]  M. Van Montagu,et al.  Transposon Display identifies individual transposable elements in high copy number lines. , 2002, The Plant journal : for cell and molecular biology.

[46]  H. Vierheilig,et al.  Ink and Vinegar, a Simple Staining Technique for Arbuscular-Mycorrhizal Fungi , 1998, Applied and Environmental Microbiology.

[47]  C. Napoli,et al.  Highly Branched Phenotype of the Petunia dad1-1 Mutant Is Reversed by Grafting , 1996, Plant physiology.

[48]  L. Mur,et al.  Targeted gene inactivation in petunia by PCR-based selection of transposon insertion mutants. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Manuela Giovannetti,et al.  AN EVALUATION OF TECHNIQUES FOR MEASURING VESICULAR ARBUSCULAR MYCORRHIZAL INFECTION IN ROOTS , 1980 .

[50]  M. Wall,et al.  Germination of Witchweed (Striga lutea Lour.): Isolation and Properties of a Potent Stimulant , 1966, Science.

[51]  Thomas D. Schmittgen,et al.  Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2 2 DD C T Method , 2022 .