8.0% Efficient All‐Polymer Solar Cells with High Photovoltage of 1.1 V and Internal Quantum Efficiency near Unity

In very recent years, growing efforts have been devoted to the development of all‐polymer solar cells (all‐PSCs). One of the advantages of all‐PSCs over the fullerene‐based PSCs is the versatile design of both donor and acceptor polymers which allows the optimization of energy levels to maximize the open‐circuit voltage (Voc). However, there is no successful example of all‐PSCs with both high Voc over 1 V and high power conversion efficiency (PCE) up to 8% reported so far. In this work, a combination of a donor polymer poly[4,8‐bis(5‐(2‐octylthio)thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl‐alt‐(5‐(2‐ethylhexyl)‐4H‐thieno[3,4‐c]pyrrole‐4,6(5H)‐dione)‐1,3‐diyl] (PBDTS‐TPD) with a low‐lying highest occupied molecular orbital level and an acceptor polymer poly[[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐thiophene‐2,5‐diyl] (PNDI‐T) with a high‐lying lowest unoccupied molecular orbital level is used, realizing high‐performance all‐PSCs with simultaneously high Voc of 1.1 V and high PCE of 8.0%, and surpassing the performance of the corresponding PC71BM‐based PSCs. The PBDTS‐TPD:PNDI‐T all‐PSCs achieve a maximum internal quantum efficiency of 95% at 450 nm, which reveals that almost all the absorbed photons can be converted into free charges and collected by electrodes. This work demonstrates the advantages of all‐PSCs by incorporating proper donor and acceptor polymers to boost both Voc and PCEs.

[1]  Zhaojun Li,et al.  High‐Performance and Stable All‐Polymer Solar Cells Using Donor and Acceptor Polymers with Complementary Absorption , 2017 .

[2]  Mats Andersson,et al.  High-photovoltage all-polymer solar cells based on a diketopyrrolopyrrole-isoindigo acceptor polymer , 2017 .

[3]  Fei Huang,et al.  Optimisation of processing solvent and molecular weight for the production of green-solvent-processed all-polymer solar cells with a power conversion efficiency over 9% , 2017 .

[4]  I. McCulloch,et al.  Reduced voltage losses yield 10% efficient fullerene free organic solar cells with >1 V open circuit voltages† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6ee02598f Click here for additional data file. , 2016, Energy & environmental science.

[5]  Bumjoon J. Kim,et al.  From Fullerene-Polymer to All-Polymer Solar Cells: The Importance of Molecular Packing, Orientation, and Morphology Control. , 2016, Accounts of chemical research.

[6]  Jean-Luc Brédas,et al.  Thieno[3,4-c]pyrrole-4,6-dione-3,4-difluorothiophene Polymer Acceptors for Efficient All-Polymer Bulk Heterojunction Solar Cells. , 2016, Angewandte Chemie.

[7]  H. Ade,et al.  A Vinylene‐Bridged Perylenediimide‐Based Polymeric Acceptor Enabling Efficient All‐Polymer Solar Cells Processed under Ambient Conditions , 2016, Advanced materials.

[8]  Bumjoon J. Kim,et al.  Side‐Chain Fluorination: An Effective Approach to Achieving High‐Performance All‐Polymer Solar Cells with Efficiency Exceeding 7% , 2016, Advanced materials.

[9]  O. Inganäs,et al.  Low Band Gap Polymer Solar Cells With Minimal Voltage Losses , 2016 .

[10]  H. Ade,et al.  Manipulation of Domain Purity and Orientational Ordering in High Performance All-Polymer Solar Cells , 2016 .

[11]  Bumjoon J. Kim,et al.  Controlling Energy Levels and Blend Morphology for All-Polymer Solar Cells via Fluorination of a Naphthalene Diimide-Based Copolymer Acceptor , 2016 .

[12]  O. Inganäs,et al.  High Performance All-Polymer Solar Cells by Synergistic Effects of Fine-Tuned Crystallinity and Solvent Annealing. , 2016, Journal of the American Chemical Society.

[13]  Bumjoon J. Kim,et al.  Controlling Molecular Orientation of Naphthalenediimide‐Based Polymer Acceptors for High Performance All‐Polymer Solar Cells , 2016 .

[14]  M. Ford,et al.  Improved All‐Polymer Solar Cell Performance by Using Matched Polymer Acceptor , 2016 .

[15]  Jun Liu,et al.  Polymer Acceptor Based on Double B←N Bridged Bipyridine (BNBP) Unit for High‐Efficiency All‐Polymer Solar Cells , 2016, Advanced materials.

[16]  Bumjoon J. Kim,et al.  Correlation between Phase-Separated Domain Sizes of Active Layer and Photovoltaic Performances in All-Polymer Solar Cells , 2016 .

[17]  Wei Ma,et al.  High Bandgap (1.9 eV) Polymer with Over 8% Efficiency in Bulk Heterojunction Solar Cells , 2016 .

[18]  Yi Zhou,et al.  Non-fullerene acceptor with low energy loss and high external quantum efficiency: towards high performance polymer solar cells , 2016 .

[19]  Daisuke Mori,et al.  Recent research progress of polymer donor/polymer acceptor blend solar cells , 2016 .

[20]  Yongfang Li,et al.  Non-Fullerene Polymer Solar Cells Based on Alkylthio and Fluorine Substituted 2D-Conjugated Polymers Reach 9.5% Efficiency. , 2016, Journal of the American Chemical Society.

[21]  Jianqi Zhang,et al.  All‐Polymer Solar Cells Based on Absorption‐Complementary Polymer Donor and Acceptor with High Power Conversion Efficiency of 8.27% , 2016, Advanced materials.

[22]  Xiaowei Zhan,et al.  Oligomer Molecules for Efficient Organic Photovoltaics. , 2016, Accounts of chemical research.

[23]  Ashraf Uddin,et al.  Open circuit voltage of organic solar cells: an in-depth review , 2016 .

[24]  H. Ade,et al.  Efficient organic solar cells processed from hydrocarbon solvents , 2016, Nature Energy.

[25]  Huajun Xu,et al.  High-performance ternary blend all-polymer solar cells with complementary absorption bands from visible to near-infrared wavelengths , 2016 .

[26]  Itaru Osaka,et al.  High-efficiency polymer solar cells with small photon energy loss , 2015, Nature Communications.

[27]  F. Huang,et al.  Solution processed thick film organic solar cells , 2015 .

[28]  Christopher M. Proctor,et al.  Significance of Average Domain Purity and Mixed Domains on the Photovoltaic Performance of High‐Efficiency Solution‐Processed Small‐Molecule BHJ Solar Cells , 2015 .

[29]  C. B. Nielsen,et al.  Non-Fullerene Electron Acceptors for Use in Organic Solar Cells , 2015, Accounts of chemical research.

[30]  Cheng Wang,et al.  Flexible, highly efficient all-polymer solar cells , 2015, Nature Communications.

[31]  H. Ade,et al.  Manipulating Aggregation and Molecular Orientation in All‐Polymer Photovoltaic Cells , 2015, Advanced materials.

[32]  H. Ohkita,et al.  Exciton Diffusion in Conjugated Polymers: From Fundamental Understanding to Improvement in Photovoltaic Conversion Efficiency. , 2015, The journal of physical chemistry letters.

[33]  Gregory C. Welch,et al.  Key components to the recent performance increases of solution processed non-fullerene small molecule acceptors , 2015 .

[34]  Samson A Jenekhe,et al.  7.7% Efficient All‐Polymer Solar Cells , 2015, Advanced materials.

[35]  Feng Liu,et al.  Fluoro‐Substituted n‐Type Conjugated Polymers for Additive‐Free All‐Polymer Bulk Heterojunction Solar Cells with High Power Conversion Efficiency of 6.71% , 2015, Advanced materials.

[36]  Itaru Osaka,et al.  Efficient inverted polymer solar cells employing favourable molecular orientation , 2015, Nature Photonics.

[37]  Bumjoon J. Kim,et al.  High‐Performance All‐Polymer Solar Cells Via Side‐Chain Engineering of the Polymer Acceptor: The Importance of the Polymer Packing Structure and the Nanoscale Blend Morphology , 2015, Advanced materials.

[38]  S. Jenekhe,et al.  n-Type semiconducting naphthalene diimide-perylene diimide copolymers: controlling crystallinity, blend morphology, and compatibility toward high-performance all-polymer solar cells. , 2015, Journal of the American Chemical Society.

[39]  H. Y. Woo,et al.  Optimization of side chains in alkylthiothiophene-substituted benzo[1,2-b:4,5-b′]dithiophene-based photovoltaic polymers , 2015 .

[40]  Feng Liu,et al.  Single-junction polymer solar cells with high efficiency and photovoltage , 2015, Nature Photonics.

[41]  Christopher M. Proctor,et al.  Mobility Guidelines for High Fill Factor Solution‐Processed Small Molecule Solar Cells , 2014, Advanced materials.

[42]  Daisuke Mori,et al.  Highly efficient charge-carrier generation and collection in polymer/polymer blend solar cells with a power conversion efficiency of 5.7% , 2014 .

[43]  John R. Tumbleston,et al.  Quantification of Nano‐ and Mesoscale Phase Separation and Relation to Donor and Acceptor Quantum Efficiency, Jsc, and FF in Polymer:Fullerene Solar Cells , 2014, Advanced materials.

[44]  Christopher J. Tassone,et al.  Ordering Effects in Benzo[1,2‐b:4,5‐b′]difuran‐thieno[3,4‐c]pyrrole‐4,6‐dione Polymers with >7% Solar Cell Efficiency , 2014, Advanced materials.

[45]  Long Ye,et al.  Highly Efficient 2D-Conjugated Benzodithiophene-Based Photovoltaic Polymer with Linear Alkylthio Side Chain , 2014 .

[46]  Alberto Salleo,et al.  High Performance All‐Polymer Solar Cell via Polymer Side‐Chain Engineering , 2014, Advanced materials.

[47]  Chain‐Shu Hsu,et al.  Applications of functional fullerene materials in polymer solar cells , 2014 .

[48]  P. Beaujuge,et al.  Electron-Deficient N-Alkyloyl Derivatives of Thieno[3,4-c]pyrrole-4,6-dione Yield Efficient Polymer Solar Cells with Open-Circuit Voltages > 1 V , 2014 .

[49]  Eric T. Hoke,et al.  Ring Substituents Mediate the Morphology of PBDTTPD-PCBM Bulk-Heterojunction Solar Cells , 2014 .

[50]  Wendimagegn Mammo,et al.  25th Anniversary Article: Isoindigo‐Based Polymers and Small Molecules for Bulk Heterojunction Solar Cells and Field Effect Transistors , 2014, Advanced materials.

[51]  Robert P. H. Chang,et al.  Morphology‐Performance Relationships in High‐Efficiency All‐Polymer Solar Cells , 2014 .

[52]  Ifor D. W. Samuel,et al.  Determining the optimum morphology in high-performance polymer-fullerene organic photovoltaic cells , 2013, Nature Communications.

[53]  Christopher M. Proctor,et al.  Charge carrier recombination in organic solar cells , 2013 .

[54]  Bumjoon J. Kim,et al.  Importance of Optimal Composition in Random Terpolymer-Based Polymer Solar Cells , 2013 .

[55]  M. Grabolle,et al.  Relative and absolute determination of fluorescence quantum yields of transparent samples , 2013, Nature Protocols.

[56]  John R. Tumbleston,et al.  Domain Purity, Miscibility, and Molecular Orientation at Donor/Acceptor Interfaces in High Performance Organic Solar Cells: Paths to Further Improvement , 2013 .

[57]  J. Fréchet,et al.  Linear side chains in benzo[1,2-b:4,5-b']dithiophene-thieno[3,4-c]pyrrole-4,6-dione polymers direct self-assembly and solar cell performance. , 2013, Journal of the American Chemical Society.

[58]  Youyong Li,et al.  Efficient Polymer Solar Cells with a High Open Circuit Voltage of 1 Volt , 2013 .

[59]  R. Janssen,et al.  The effect of bias light on the spectral responsivity of organic solar cells , 2012 .

[60]  J. Ferraris,et al.  Enhanced and Tunable Open-Circuit Voltage using Dialkylthio Benzo[1,2-b:4,5-b′]dithiophene in Polymer Solar Cells , 2012 .

[61]  A. Hexemer,et al.  Soft x-ray scattering facility at the Advanced Light Source with real-time data processing and analysis. , 2012, The Review of scientific instruments.

[62]  P. Blom,et al.  Degradation mechanisms in organic photovoltaic devices , 2012 .

[63]  B. Collins,et al.  Correlating the efficiency and nanomorphology of polymer blend solar cells utilizing resonant soft X-ray scattering. , 2012, ACS nano.

[64]  M. Toney,et al.  Structural Order in Bulk Heterojunction Films Prepared with Solvent Additives , 2011, Advanced materials.

[65]  M. Wienk,et al.  Quantifying Bimolecular Recombination Losses in Organic Bulk Heterojunction Solar Cells , 2011, Advanced materials.

[66]  Callie W. Babbitt,et al.  Material and energy intensity of fullerene production. , 2011, Environmental science & technology.

[67]  A. Roy,et al.  Recombination in polymer-fullerene bulk heterojunction solar cells , 2010, 1010.5021.

[68]  Howard A. Padmore,et al.  A SAXS/WAXS/GISAXS Beamline with Multilayer Monochromator , 2010 .

[69]  J. Lüning,et al.  Nanomorphology of bulk heterojunction photovoltaic thin films probed with resonant soft X-ray scattering. , 2010, Nano letters.

[70]  Raj René Janssen,et al.  The Energy of Charge‐Transfer States in Electron Donor–Acceptor Blends: Insight into the Energy Losses in Organic Solar Cells , 2009 .

[71]  Akihiro Furube,et al.  Analysis of the excited states of regioregular polythiophene P3HT , 2008 .

[72]  C. Brabec,et al.  Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells , 2007 .

[73]  Lenneke H. Slooff,et al.  Determining the internal quantum efficiency of highly efficient polymer solar cells through optical modeling , 2007 .

[74]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[75]  Mikkel Jørgensen,et al.  25th Anniversary Article: Rise to Power – OPV‐Based Solar Parks , 2014, Advanced materials.

[76]  A. Heeger,et al.  25th Anniversary Article: Bulk Heterojunction Solar Cells: Understanding the Mechanism of Operation , 2014, Advanced materials.

[77]  John R. Tumbleston,et al.  Absolute Measurement of Domain Composition and Nanoscale Size Distribution Explains Performance in PTB7:PC71BM Solar Cells , 2013 .