High-throughput smFRET analysis of freely diffusing nucleic acid molecules and associated proteins

Single-molecule Förster resonance energy transfer (smFRET) is a powerful technique for nanometer-scale studies of single molecules. Solution-based smFRET, in particular, can be used to study equilibrium intra- and intermolecular conformations, binding/unbinding events and conformational changes under biologically relevant conditions without ensemble averaging. However, single-spot smFRET measurements in solution are slow. Here, we detail a high-throughput smFRET approach that extends the traditional single-spot confocal geometry to a multispot one. The excitation spots are optically conjugated to two custom silicon single photon avalanche diode (SPAD) arrays. Two-color excitation is implemented using a periodic acceptor excitation (PAX), allowing distinguishing between singly- and doubly-labeled molecules. We demonstrate the ability of this setup to rapidly and accurately determine FRET efficiencies and population stoichiometries by pooling the data collected independently from the multiple spots. We also show how the high throughput of this approach can be used to increase the temporal resolution of single-molecule FRET population characterization from minutes to seconds. Combined with microfluidics, this high-throughput approach will enable simple real-time kinetic studies as well as powerful molecular screening applications.

[1]  E. Charbon,et al.  A 512 × 512 SPAD Image Sensor With Integrated Gating for Widefield FLIM , 2019, IEEE Journal of Selected Topics in Quantum Electronics.

[2]  Johannes Hohlbein,et al.  High-throughput, non-equilibrium studies of single biomolecules using glass-made nanofluidic devices. , 2019, Lab on a chip.

[3]  Antonino Ingargiola,et al.  Monte Carlo Diffusion-Enhanced Photon Inference: Distance Distributions and Conformational Dynamics in Single-Molecule FRET. , 2018, The journal of physical chemistry. B.

[4]  Edoardo Charbon,et al.  Widefield High Frame Rate Single-Photon SPAD Imagers for SPIM-FCS. , 2018, Biophysical journal.

[5]  Waldemar Schrimpf,et al.  PAM: A Framework for Integrated Analysis of Imaging, Single-Molecule, and Ensemble Fluorescence Data , 2018, Biophysical journal.

[6]  Antonino Ingargiola,et al.  48-spot single-molecule FRET setup with periodic acceptor excitation. , 2018, The Journal of chemical physics.

[7]  Angelo Gulinatti,et al.  Red-Enhanced Photon Detection Module Featuring a 32 × 1 Single-Photon Avalanche Diode Array. , 2018, IEEE photonics technology letters : a publication of the IEEE Laser and Electro-optics Society.

[8]  Rory R. Duncan,et al.  A $256\times256$ , 100-kfps, 61% Fill-Factor SPAD Image Sensor for Time-Resolved Microscopy Applications , 2018, IEEE Transactions on Electron Devices.

[9]  Antonino Ingargiola,et al.  Toward dynamic structural biology: Two decades of single-molecule Förster resonance energy transfer , 2018, Science.

[10]  S. Weiss,et al.  Optical crosstalk in SPAD arrays for high-throughput single-molecule fluorescence spectroscopy , 2017, bioRxiv.

[11]  C. Seidel,et al.  Combining Graphical and Analytical Methods with Molecular Simulations To Analyze Time-Resolved FRET Measurements of Labeled Macromolecules Accurately , 2017, The journal of physical chemistry. B.

[12]  Antonino Ingargiola,et al.  Different types of pausing modes during transcription initiation , 2017, Transcription.

[13]  Antonino Ingargiola,et al.  16-Ch time-resolved single-molecule spectroscopy using line excitation , 2017, BiOS.

[14]  Luke P. Lee,et al.  Self-powered integrated microfluidic point-of-care low-cost enabling (SIMPLE) chip , 2017, Science Advances.

[15]  Edoardo Charbon,et al.  Ten years of biophotonics single-photon SPAD imager applications: retrospective and outlook , 2017, BiOS.

[16]  Francesco Panzeri,et al.  Multispot single-molecule FRET: High-throughput analysis of freely diffusing molecules , 2016, bioRxiv.

[17]  S. Weiss,et al.  Backtracked and paused transcription initiation intermediate of Escherichia coli RNA polymerase , 2016, Proceedings of the National Academy of Sciences.

[18]  Antonino Ingargiola,et al.  FRETBursts: An Open Source Toolkit for Analysis of Freely-Diffusing Single-Molecule FRET , 2016, bioRxiv.

[19]  Antonino Ingargiola,et al.  Photon-HDF5: open data format and computational tools for timestamp-based single-molecule experiments , 2016, SPIE BiOS.

[20]  Antonino Ingargiola,et al.  Photon-HDF5: An Open File Format for Timestamp-Based Single-Molecule Fluorescence Experiments. , 2016, Biophysical journal.

[21]  Simone Tisa,et al.  Quantitative confocal fluorescence microscopy of dynamic processes by multifocal fluorescence correlation spectroscopy , 2015, European Conference on Biomedical Optics.

[22]  K. Kamagata,et al.  Complexity of the folding transition of the B domain of protein A revealed by the high-speed tracking of single-molecule fluorescence time series. , 2015, The journal of physical chemistry. B.

[23]  S. Weiss,et al.  Silicon Photon-Counting Avalanche Diodes for Single-Molecule Fluorescence Spectroscopy , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[24]  Katsunari Okamoto,et al.  Wavelength-Division-Multiplexing Devices in Thin SOI: Advances and Prospects , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[25]  Quan Wang,et al.  Single-molecule motions enable direct visualization of biomolecular interactions in solution , 2014, Nature Methods.

[26]  Aaron M. Streets,et al.  Microfluidics for biological measurements with single-molecule resolution. , 2014, Current opinion in biotechnology.

[27]  B. Schuler,et al.  Taylor dispersion and the position-to-time conversion in microfluidic mixing devices. , 2014, Lab on a chip.

[28]  A. Gulinatti,et al.  Complete and Compact 32-Channel System for Time-Correlated Single-Photon Counting Measurements , 2013, IEEE Photonics Journal.

[29]  Benjamin Schuler,et al.  Microfluidic mixer designed for performing single-molecule kinetics with confocal detection on timescales from milliseconds to minutes , 2013, Nature Protocols.

[30]  Yuta Suzuki,et al.  Microsecond dynamics of an unfolded protein by a line confocal tracking of single molecule fluorescence , 2013, Scientific Reports.

[31]  Francesco Panzeri,et al.  Single-molecule FRET experiments with a red-enhanced custom technology SPAD , 2013, Photonics West - Biomedical Optics.

[32]  Francesco Panzeri,et al.  8-spot smFRET analysis using two 8-pixel SPAD arrays , 2013, Photonics West - Biomedical Optics.

[33]  A. Cheng,et al.  Development of new photon-counting detectors for single-molecule fluorescence microscopy , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[34]  Angelo Gulinatti,et al.  A 48-pixel array of single photon avalanche diodes for multispot single molecule analysis , 2013, Photonics West - Optoelectronic Materials and Devices.

[35]  Claus A M Seidel,et al.  A toolkit and benchmark study for FRET-restrained high-precision structural modeling , 2012, Nature Methods.

[36]  S. Cova,et al.  New silicon SPAD technology for enhanced red-sensitivity, high-resolution timing and system integration , 2012 .

[37]  Angelo Gulinatti,et al.  Silicon single-photon avalanche diodes for high-performance parallel photon timing , 2012, Defense, Security, and Sensing.

[38]  Volodymyr Kudryavtsev,et al.  Combining MFD and PIE for accurate single-pair Förster resonance energy transfer measurements. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[39]  Mathew H Horrocks,et al.  Single molecule fluorescence under conditions of fast flow. , 2012, Analytical chemistry.

[40]  Edoardo Charbon,et al.  FPGA implementation of a 32x32 autocorrelator array for analysis of fast image series. , 2011, Optics express.

[41]  Ron R Lin,et al.  High-throughput single-molecule optofluidic analysis , 2011, Nature Methods.

[42]  Franco Zappa,et al.  Ultra high-throughput single molecule spectroscopy with a 1024 pixel SPAD , 2011, BiOS.

[43]  Jane Clarke,et al.  Quantifying heterogeneity and conformational dynamics from single molecule FRET of diffusing molecules: recurrence analysis of single particles (RASP). , 2011, Physical chemistry chemical physics : PCCP.

[44]  M. Ghioni,et al.  Progress in Quenching Circuits for Single Photon Avalanche Diodes , 2010, IEEE Transactions on Nuclear Science.

[45]  Angelo Gulinatti,et al.  High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array , 2010, Biomedical optics express.

[46]  Alex Groisman,et al.  Ultrafast microfluidic mixer with three-dimensional flow focusing for studies of biochemical kinetics. , 2010, Lab on a chip.

[47]  Ivan Rech,et al.  High-throughput multispot single-molecule spectroscopy , 2010, BiOS.

[48]  C. Seidel,et al.  Accurate single-molecule FRET studies using multiparameter fluorescence detection. , 2010, Methods in enzymology.

[49]  Kambiz M. Hamadani,et al.  Nonequilibrium single molecule protein folding in a coaxial mixer. , 2008, Biophysical journal.

[50]  Antonino Ingargiola,et al.  Optical crosstalk in single photon avalanche diode arrays: a new complete model. , 2008, Optics express.

[51]  W. Moerner,et al.  Controlling Brownian motion of single protein molecules and single fluorophores in aqueous buffer. , 2008, Optics express.

[52]  Paul R. Selvin,et al.  Single-molecule techniques : a laboratory manual , 2008 .

[53]  K. Schulten,et al.  Fluorescence-Force Spectroscopy Maps Two-Dimensional Reaction Landscape of the Holliday Junction , 2007, Science.

[54]  S. Cova,et al.  Progress in Silicon Single-Photon Avalanche Diodes , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[55]  Shimon Weiss,et al.  Photobleaching pathways in single-molecule FRET experiments. , 2007, Journal of the American Chemical Society.

[56]  Shimon Weiss,et al.  Periodic acceptor excitation spectroscopy of single molecules , 2007, European Biophysics Journal.

[57]  Ivan Rech,et al.  Monolithic silicon matrix detector with 50 μm photon counting pixels , 2007 .

[58]  Shimon Weiss,et al.  Initial Transcription by RNA Polymerase Proceeds Through a DNA-Scrunching Mechanism , 2006, Science.

[59]  Terence R. Strick,et al.  Abortive Initiation and Productive Initiation by RNA Polymerase Involve DNA Scrunching , 2006, Science.

[60]  Shimon Weiss,et al.  Shot-noise limited single-molecule FRET histograms: comparison between theory and experiments. , 2006, The journal of physical chemistry. B.

[61]  A. Szabó,et al.  Theory of the statistics of kinetic transitions with application to single-molecule enzyme catalysis. , 2006, The Journal of chemical physics.

[62]  Suren Felekyan,et al.  Separating structural heterogeneities from stochastic variations in fluorescence resonance energy transfer distributions via photon distribution analysis. , 2006, The journal of physical chemistry. B.

[63]  C. Seidel,et al.  Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements. , 2006, The journal of physical chemistry. A.

[64]  Shimon Weiss,et al.  Probing structural heterogeneities and fluctuations of nucleic acids and denatured proteins. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Christoph Bräuchle,et al.  Pulsed interleaved excitation. , 2005, Biophysical journal.

[66]  Theo Lasser,et al.  Parallel dual-color fluorescence cross-correlation spectroscopy using diffractive optical elements. , 2005, Journal of biomedical optics.

[67]  C. Seidel,et al.  Full correlation from picoseconds to seconds by time-resolved and time-correlated single photon detection , 2005 .

[68]  Nam Ki Lee,et al.  Alternating-laser excitation of single molecules. , 2005, Accounts of chemical research.

[69]  Nam Ki Lee,et al.  Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. , 2005, Biophysical journal.

[70]  Xin Wang,et al.  Tunable reflective lens array based on liquid crystal on silicon. , 2005, Optics express.

[71]  Shimon Weiss,et al.  Femtomole mixer for microsecond kinetic studies of protein folding. , 2004, Analytical chemistry.

[72]  S. Quake,et al.  Systematic investigation of protein phase behavior with a microfluidic formulator. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[73]  Nam Ki Lee,et al.  Fluorescence-aided molecule sorting: Analysis of structure and interactions by alternating-laser excitation of single molecules , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[74]  Jörg Enderlein,et al.  Art and artefacts of fluorescence correlation spectroscopy. , 2004, Current pharmaceutical biotechnology.

[75]  Everett A Lipman,et al.  Single-Molecule Measurement of Protein Folding Kinetics , 2003, Science.

[76]  Bo Chen,et al.  Afterpulsing and its correction in fluorescence correlation spectroscopy experiments. , 2003, Applied optics.

[77]  E. Rhoades,et al.  Watching proteins fold one molecule at a time , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[78]  W. Webb,et al.  Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. , 2002, Biophysical journal.

[79]  浅沼 広子,et al.  High-Throughput な迅速凍結標本の作製 , 2002 .

[80]  K. Murakami,et al.  Structural Basis of Transcription Initiation: An RNA Polymerase Holoenzyme-DNA Complex , 2002, Science.

[81]  O. Krichevsky,et al.  Fluorescence correlation spectroscopy: the technique and its applications , 2002 .

[82]  A Volkmer,et al.  Data registration and selective single-molecule analysis using multi-parameter fluorescence detection. , 2001, Journal of biotechnology.

[83]  G. Spalding,et al.  Computer-generated holographic optical tweezer arrays , 2000, cond-mat/0008414.

[84]  Liming Ying,et al.  Ratiometric Analysis of Single-Molecule Fluorescence Resonance Energy Transfer Using Logical Combinations of Threshold Criteria: A Study of 12-mer DNA , 2000 .

[85]  M Dahan,et al.  Single-pair fluorescence resonance energy transfer on freely diffusing molecules: observation of Förster distance dependence and subpopulations. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[86]  M. Eigen,et al.  Two-beam cross-correlation:  a method to characterize transport phenomena in micrometer-sized structures. , 1999, Analytical chemistry.

[87]  Christian Eggeling,et al.  Quantitative identification of different single molecules by selective time-resolved confocal fluorescence spectroscopy. , 1998 .

[88]  C. Seidel,et al.  Photobleaching of Fluorescent Dyes under Conditions Used for Single-Molecule Detection:  Evidence of Two-Step Photolysis. , 1998, Analytical chemistry.

[89]  R. Austin,et al.  Hydrodynamic Focusing on a Silicon Chip: Mixing Nanoliters in Microseconds , 1998 .

[90]  C. Seidel,et al.  Monitoring conformational dynamics of a single molecule by selective fluorescence spectroscopy. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[91]  A. Lacaita,et al.  On the bremsstrahlung origin of hot-carrier-induced photons in silicon devices , 1993 .

[92]  Bude,et al.  Hot-carrier luminescence in Si. , 1992, Physical review. B, Condensed matter.

[93]  D. A. Lewis,et al.  Real‐time elimination of dead time and afterpulsing in counting systems , 1988 .

[94]  F. Sigworth,et al.  Data transformations for improved display and fitting of single-channel dwell time histograms. , 1987, Biophysical journal.

[95]  L. Stryer,et al.  Energy transfer: a spectroscopic ruler. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[96]  W. G. Spitzer,et al.  Infrared Absorption in n-Type Silicon , 1957 .