A non-equilibrium superradiant phase transition in free space

A class of systems exists in which dissipation, external drive and interactions compete and give rise to non equilibrium phases that would not exist without the drive. There, phase transitions could occur without the breaking of any symmetry, yet with a local order parameter, in contrast with the Landau theory of phase transitions at equilibrium. One of the simplest driven dissipative quantum systems consists of two-level atoms enclosed in a volume smaller than the wavelength of the atomic transition cubed, driven by a light field. The competition between collective coupling of the atoms to the driving field and their cooperative decay should lead to a transition between a phase where all the atomic dipoles are phaselocked and a phase governed by superradiant spontaneous emission. Here, we realize this model using a pencil-shaped cloud of laser cooled atoms in free space, optically excited along its main axis, and observe the predicted phases. Our demonstration is promising in view of obtaining free-space superradiant lasers or to observe new types of time crystals.

[1]  F. Tebbenjohanns,et al.  Observation of superradiant bursts in waveguide QED , 2022, 2211.08940.

[2]  E. Shahmoon,et al.  Quantum entangled states of a classically radiating macroscopic spin , 2022, 2204.05455.

[3]  A. Browaeys,et al.  From superradiance to subradiance: exploring the many-body Dicke ladder. , 2021, Optics letters.

[4]  Thomas G. Walker,et al.  Spatial Coherence of Light in Collective Spontaneous Emission , 2021, PRX Quantum.

[5]  A. Browaeys,et al.  Laser-Driven Superradiant Ensembles of Two-Level Atoms near Dicke Regime. , 2021, Physical review letters.

[6]  Haonan Liu,et al.  Superradiant emission of a thermal atomic beam into an optical cavity , 2021, Physical Review A.

[7]  D. Barredo,et al.  Preparation of one-dimensional chains and dense cold atomic clouds with a high numerical aperture four-lens system , 2021 .

[8]  A. Hemmerich,et al.  Observation of a Dissipative Time Crystal. , 2020, Physical review letters.

[9]  J. Ruostekoski,et al.  Bistable optical transmission through arrays of atoms in free space , 2020, 2012.08207.

[10]  J. Ruostekoski,et al.  Signatures of optical phase transitions in superradiant and subradiant atomic arrays , 2020, 2007.03473.

[11]  A. Browaeys,et al.  Collective Shift in Resonant Light Scattering by a One-Dimensional Atomic Chain. , 2020, Physical review letters.

[12]  R. J. Lewis-Swan,et al.  Exploring dynamical phase transitions with cold atoms in an optical  cavity , 2020, Nature.

[13]  A. Hemmerich,et al.  Pulse Delay Time Statistics in a Superradiant Laser with Calcium Atoms. , 2019, Physical review letters.

[14]  J. Thomsen,et al.  Lasing on a narrow transition in a cold thermal strontium ensemble , 2019, Physical Review A.

[15]  K. Mølmer,et al.  Lasing in the superradiant crossover regime , 2018, Physical Review A.

[16]  K. Mølmer,et al.  Monte-Carlo simulations of superradiant lasing , 2018, New Journal of Physics.

[17]  N. Cooper,et al.  Phases of driven two-level systems with nonlocal dissipation , 2017, 1712.04296.

[18]  M. Dalmonte,et al.  Boundary Time Crystals. , 2017, Physical review letters.

[19]  J. Larson,et al.  Dissipation-driven quantum phase transitions and symmetry breaking , 2017, Physical Review A.

[20]  F. Robicheaux,et al.  Superradiance in inverted multilevel atomic clouds , 2017, 1701.03719.

[21]  A. Hemmerich,et al.  Observation of a Superradiant Mott Insulator in the Dicke-Hubbard Model. , 2015, Physical review letters.

[22]  J. Thompson,et al.  A Cold-Strontium Laser in the Superradiant Crossover Regime , 2015, 1510.06733.

[23]  J. Ruostekoski,et al.  Observation of suppression of light scattering induced by dipole-dipole interactions in a cold-atom ensemble. , 2014, Physical review letters.

[24]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[25]  I. Lesanovsky,et al.  Steady-state properties of a driven atomic ensemble with nonlocal dissipation , 2013, 1308.3967.

[26]  F. Brennecke,et al.  Cold atoms in cavity-generated dynamical optical potentials , 2012, 1210.0013.

[27]  J. Bohnet,et al.  A steady-state superradiant laser with less than one intracavity photon , 2012, Nature.

[28]  V. Vuletić,et al.  Interaction between Atomic Ensembles and Optical Resonators: Classical Description , 2011, 1104.3594.

[29]  Christine Guerlin,et al.  Dicke quantum phase transition with a superfluid gas in an optical cavity , 2009, Nature.

[30]  Jun Ye,et al.  Prospects for a millihertz-linewidth laser. , 2009, Physical review letters.

[31]  Serge Haroche,et al.  Superradiance: An essay on the theory of collective spontaneous emission , 1982 .

[32]  H. Carmichael Analytical and numerical results for the steady state in cooperative resonance fluorescence , 1980 .

[33]  S. V. Lawande,et al.  Intensity fluctuations in a driven Dicke model , 1980 .

[34]  D. Walls Cooperative fluorescence from N coherently driven two-level atoms , 1980 .

[35]  R. Gilmore,et al.  Transient and steady-state behavior of collective atomic systems driven by a classical field , 1978 .

[36]  R. Harney,et al.  Optical resonance and two-level atoms , 1978, IEEE Journal of Quantum Electronics.

[37]  D. Walls,et al.  Non-Equilibrium Phase Transitions in Cooperative Atomic Systems , 1978 .

[38]  D. Walls,et al.  CORRIGENDUM: Hysteresis in the spectrum for cooperative resonance fluorescence , 1977 .

[39]  G. Agarwal,et al.  Collective atomic effects in resonance fluorescence , 1977 .

[40]  R. Sillitto The Quantum Theory of Light , 1974 .

[41]  J. Eberly,et al.  Optical resonance and two-level atoms , 1975 .

[42]  R. Dicke Coherence in Spontaneous Radiation Processes , 1954 .