SPDEs leading to local, relativistic quantum vector fields with indefinite metric and nontrivial S-matrix

In this article we review the construction of local, relativistic quantum vector fields by analytic continuation of Euclidean vector fields obtained as solutions of covariant SPDEs. We revise the formulation of such SPDEs by introducing new Gaussian noise terms – a procedure which avoids the re-definition of the two point functions needed in previous approaches in order to obtain relativistic fields with nontrivial scattering. We describe the construction of asymptotic states and the scattering of the analytically continued solutions of these new SPDEs and we give precise conditions for nontrivial and well-defined scattering.

[1]  S. Albeverio,et al.  Convoluted generalized white noise, Schwinger functions and their continuation to Wightman functions , 2004, math-ph/0409056.

[2]  4D LOCAL QUANTUM FIELD THEORY MODELS FROM COVARIANT STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS I: GENERALITIES , 2001 .

[3]  S. Albeverio,et al.  Scattering Theory for Quantum Fields¶with Indefinite Metric , 2001, math-ph/0501031.

[4]  S. Albeverio,et al.  Scattering behaviour of quantum vector fields obtained from Euclidean covariant SPDEs , 1999 .

[5]  Poland,et al.  From stochastic differential equation to quantum field theory , 1998, quant-ph/9810002.

[6]  On GNS Representations¶on Inner Product Spaces , 1998 .

[7]  The Hilbert Space Structure Condition for Quantum Field Theories with Indefinite Metric and Transformations with Linear Functionals , 1997 .

[8]  S. Albeverio,et al.  Nontrivial scattering amplitudes for some local relativistic quantum field models with indefinite metric , 1997 .

[9]  Models of Local Relativistic Quantum Fields with Indefinite Metric (in All Dimensions) , 1997, math-ph/0409057.

[10]  S. Albeverio,et al.  CONVOLUTED GENERALIZED WHITE NOISE, SCHWINGER FUNCTIONS AND THEIR ANALYTIC CONTINUATION TO WIGHTMAN FUNCTIONS , 1996 .

[11]  R. Gielerak,et al.  Covariant SPDEs and quantum field structures , 1996, funct-an/9607001.

[12]  F. Strocchi Selected Topics on the General Properties of Quantum Field Theory: Lecture Notes , 1993 .

[13]  Random fields as solutions of the inhomogeneous quaternionic Cauchy-Riemann equation. I. Invariance and analytic continuation , 1990 .

[14]  S. Albeverio,et al.  Construction of interacting local relativistic quantum fields in four spacetime dimensions , 1988 .

[15]  Quaternionic non-abelian relativistic quantum fields in four space-time dimensions , 1987 .

[16]  Euclidean Markov fields and relativistic quantum fields from stochastic partial differential equations in four dimensions , 1986 .

[17]  Kiyosi Itô Foundations of Stochastic Differential Equations in Infinite Dimensional Spaces , 1984 .

[18]  伊藤 清 Foundations of stochastic differential equations in infinite dimensional spaces , 1984 .

[19]  米谷 民明,et al.  J. Glimm and A. Jaffe: Quantum Physics; A Functional Integral Point of View, Springer-Verlag, New York and Heidelberg, 1981, xx+418ページ, 24.5×16.5cm, DM62. , 1983 .

[20]  Jürg Fröhlich,et al.  Scaling and Self-Similarity in Physics , 1983 .

[21]  J. Glimm,et al.  Quantum Physics: A Functional Integral Point of View , 1981 .

[22]  Infrared singularities, vacuum structure and pure phases in local quantum field theory , 1980 .

[23]  Barry Simon,et al.  The P(φ)[2] Euclidean (quantum) field theory , 1974 .

[24]  Robert Schrader,et al.  Axioms for Euclidean Green's functions II , 1973 .

[25]  Edward Nelson The free Markoff field , 1973 .

[26]  R. Schrader,et al.  Axioms for Euclidean Green's functions , 1973 .

[27]  Edward Nelson,et al.  Construction of quantum fields from Markoff fields. , 1973 .

[28]  James Glimm,et al.  Positivity of the φ 34 Hamiltonian , 1973 .

[29]  K. Hepp On the connection between the LSZ and Wightman quantum field theory , 1965 .

[30]  A. Wightman,et al.  PCT, spin and statistics, and all that , 1964 .

[31]  R. Haag Quantum field theories with composite particles and asymptotic conditions , 1958 .

[32]  O. W. Greenberg The Asymptotic Condition in Quantum Field Theory. , 1956 .

[33]  H. Lehmann,et al.  Zur Formulierung quantisierter Feldtheorien , 1955 .

[34]  Suraj N. Gupta Theory of longitudinal photons in quantum electrodynamics , 1950 .

[35]  G. Grimaldi,et al.  Il nuovo cimento , 1889 .