Electronic and magnetic structures of the postperovskite-type Fe2O3 and implications for planetary magnetic records and deep interiors

Recent studies have shown that high pressure (P) induces the metallization of the Fe2+–O bonding, the destruction of magnetic ordering in Fe, and the high-spin (HS) to low-spin (LS) transition of Fe in silicate and oxide phases at the deep planetary interiors. Hematite (Fe2O3) is an important magnetic carrier mineral for deciphering planetary magnetism and a proxy for Fe in the planetary interiors. Here, we present synchrotron Mössbauer spectroscopy and X-ray diffraction combined with ab initio calculations for Fe2O3 revealing the destruction of magnetic ordering at the hematite → Rh2O3-II type (RhII) transition at 70 GPa and 300 K, and then the revival of magnetic ordering at the RhII → postperovskite (PPv) transition after laser heating at 73 GPa. At the latter transition, at least half of Fe3+ ions transform from LS to HS and Fe2O3 changes from a semiconductor to a metal. This result demonstrates that some magnetic carrier minerals may experience a complex sequence of magnetic ordering changes during impact rather than a monotonic demagnetization. Also local Fe enrichment at Earth's core-mantle boundary will lead to changes in the electronic structure and spin state of Fe in silicate PPv. If the ultra-low-velocity zones are composed of Fe-enriched silicate PPv and/or the basaltic materials are accumulated at the lowermost mantle, high electrical conductivity of these regions will play an important role for the electromagnetic coupling between the mantle and the core.

[1]  R. Ahuja,et al.  First-principles calculations of the electronic structure and pressure-induced magnetic transition in siderite FeCO3 , 2008 .

[2]  M. Kunz,et al.  Crystal structure and thermoelastic properties of (Mg0.91Fe0.09)SiO3 postperovskite up to 135 GPa and 2,700 K , 2008, Proceedings of the National Academy of Sciences.

[3]  M. Kunz,et al.  Effect of Fe on the equation of state of mantle silicate perovskite over 1 Mbar , 2008 .

[4]  K. Shimizu,et al.  The Electrical Conductivity of Post-Perovskite in Earth's D'' Layer , 2008, Science.

[5]  Kristin A. Persson,et al.  Ab initio study of the composition dependence of the pressure-induced spin crossover in perovskite (Mg1 − x,Fex)SiO3 , 2008 .

[6]  V. Struzhkin,et al.  Spin Transition Zone in Earth's Lower Mantle , 2007, Science.

[7]  Y. Meng,et al.  Spin transition and equations of state of (Mg, Fe)O solid solutions , 2007 .

[8]  W. Evans,et al.  Electrical conductivity of the lower‐mantle ferropericlase across the electronic spin transition , 2007 .

[9]  Kristin A. Persson,et al.  Ab initio study of the composition dependence of the pressure‐induced spin transition in the (Mg1−x,Fex)O system , 2006 .

[10]  K. Hirose,et al.  Ferric iron in Al‐bearing post‐perovskite , 2006 .

[11]  V. Struzhkin,et al.  Reduced Radiative Conductivity of Low-Spin (Mg,Fe)O in the Lower Mantle , 2006, Science.

[12]  Stefano de Gironcoli,et al.  Spin transition in magnesiowüstite in earth's lower mantle. , 2006, Physical review letters.

[13]  Gerbrand Ceder,et al.  Oxidation energies of transition metal oxides within the GGA+U framework , 2006 .

[14]  H. Mao,et al.  Iron-Rich Post-Perovskite and the Origin of Ultralow-Velocity Zones , 2006, Science.

[15]  Renata M. Wentzcovitch,et al.  Dissociation of MgSiO3 in the Cores of Gas Giants and Terrestrial Exoplanets , 2006, Science.

[16]  S. Ono,et al.  In situ X-ray observation of phase transformation in Fe2O3 at high pressures and high temperatures , 2005 .

[17]  T. Kikegawa,et al.  Fe‐Mg partitioning between (Mg, Fe)SiO3 post‐perovskite, perovskite, and magnesiowüstite in the Earth's lower mantle , 2005 .

[18]  H. Mao,et al.  Spin transition of iron in magnesiowüstite in the Earth's lower mantle , 2005, Nature.

[19]  R. J. Hart,et al.  Palaeomagnetism of the Vredefort meteorite crater and implications for craters on Mars , 2005, Nature.

[20]  Y. Ohishi,et al.  Post‐perovskite phase transition and mineral chemistry in the pyrolitic lowermost mantle , 2005 .

[21]  G. Ceder,et al.  The electronic structure and band gap of LiFePO4 and LiMnPO4 , 2004, cond-mat/0506125.

[22]  H. Mao,et al.  Electronic spin state of iron in lower mantle perovskite. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[23]  A. Oganov,et al.  Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth's D″ layer , 2004, Nature.

[24]  Guillaume Fiquet,et al.  Electronic Transitions in Perovskite: Possible Nonconvecting Layers in the Lower Mantle , 2004, Science.

[25]  Y. Ohishi,et al.  Post-Perovskite Phase Transition in MgSiO3 , 2004, Science.

[26]  R. Jeanloz,et al.  Stability and crystal structure of MgSiO3 perovskite to the core‐mantle boundary , 2004 .

[27]  Jürgen Hafner,et al.  First-principles calculation of the structure and magnetic phases of hematite , 2004 .

[28]  W. Sturhahn Nuclear resonant spectroscopy , 2004 .

[29]  L. Hood,et al.  High pressure magnetic transition in pyrrhotite and impact demagnetization on Mars , 2003 .

[30]  Guillaume Fiquet,et al.  Iron Partitioning in Earth's Mantle: Toward a Deep Lower Mantle Discontinuity , 2003, Science.

[31]  R. Cohen,et al.  Structure, metal-insulator transitions, and magnetic properties of FeO at high pressures , 2003 .

[32]  G. Ceder,et al.  The Alloy Theoretic Automated Toolkit: A User Guide , 2002, cond-mat/0212159.

[33]  H. Mao,et al.  Nature of the high-pressure transition in Fe2O3 hematite. , 2002, Physical review letters.

[34]  S. Sutton,et al.  Laser heated diamond cell system at the Advanced Photon Source for in situ x-ray measurements at high pressure and temperature , 2001 .

[35]  R. Jeanloz,et al.  Sediments at the top of Earth's core. , 2000, Science.

[36]  W. Sturhahn,et al.  CONUSS and PHOENIX: Evaluation of nuclear resonant scattering data , 2000 .

[37]  Raymond Jeanloz,et al.  Breakdown of the Mott-Hubbard State in Fe 2 O 3 : A First-Order Insulator-Metal Transition with Collapse of Magnetism at 50 GPa , 1999 .

[38]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[39]  J. Schneider,et al.  High-Pressure Study of h.c.p.-Argon , 1997 .

[40]  J. Revenaugh,et al.  Seismic Evidence of Partial Melt Within a Possibly Ubiquitous Low-Velocity Layer at the Base of the Mantle , 1997 .

[41]  C. McCammon Perovskite as a possible sink for ferric iron in the lower mantle , 1997, Nature.

[42]  E. R. Engdahl,et al.  Evidence for deep mantle circulation from global tomography , 1997, Nature.

[43]  R. Cohen,et al.  Magnetic Collapse in Transition Metal Oxides at High Pressure: Implications for the Earth , 1997, Science.

[44]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[45]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[46]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[47]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[48]  L. Gerward,et al.  A study of the crystal structure of Fe2O3 in the pressure range up to 65 GPa using synchrotron radiation , 1991 .

[49]  Ferreira,et al.  Electronic properties of random alloys: Special quasirandom structures. , 1990, Physical review. B, Condensed matter.

[50]  J. Poirier,et al.  Electrical conductivity of the Earth's lower mantle , 1989, Nature.

[51]  P. Schultz,et al.  Laboratory observations of impact–generated magnetic fields , 1988, Nature.

[52]  R. Jeanloz,et al.  High-pressure metallization of FeO and implications for the earth's core , 1986 .

[53]  Peter M. Bell,et al.  Calibration of the ruby pressure gauge to 800 kbar under quasi‐hydrostatic conditions , 1986 .

[54]  R. Jeanloz,et al.  High-pressure electrical resistivity measurements of Fe2O3: comparison of static-compression and shock-wave experiments to 61 GPa , 1986 .

[55]  R. Ingalls,et al.  Mössbauer-effect study of the Morin transition and atomic positions in hematite under pressure , 1983 .

[56]  K. Kondo,et al.  Electrical resistivity and phase transformation of hematite under shock compression , 1980 .

[57]  J. Bass,et al.  A synchrotron Mössbauer spectroscopy study of (Mg,Fe)SiO3 perovskite up to 120 GPa , 2005 .

[58]  H. Mao,et al.  The fate of subducted basaltic crust in the Earth's lower mantle , 1999, Nature.

[59]  R. Schoonheydt Spectroscopic Methods in Mineralogy and Geology , 1989 .

[60]  Frank C. Hawthorne,et al.  Spectroscopic methods in mineralogy and geology , 1988 .

[61]  John B. Goodenough,et al.  Magnetism and the chemical bond , 1963 .