Force‐Free Current Sheets in the Jovian Magnetodisk: The Key Role of Electron Field‐Aligned Anisotropy

Current sheets are an essential element of the planetary magnetotails, where strong plasma currents self‐consistently support magnetic field gradients. The current sheet configuration is determined by plasma populations that contribute to the current density. The most commonly investigated configuration is supported by diamagnetic cross‐field currents of hot ions, typical for the magnetospheres of magnetized planets. In this study, we examine a new type of the current sheet configuration supported by field‐aligned currents from electron streams in the Jovian magnetodisk. Such bi‐directional streams increase the electron thermal anisotropy close to the fire‐hose instability threshold and lead to strong magnetic field shear. The current sheet configuration supported by electron streams is nearly force‐free, with |B| ≈ const across the sheet. Using Juno plasma and magnetic field measurements, we investigate the internal structure of such current sheets and discuss possible mechanisms for their formation.

[1]  G. Yun,et al.  Equilibrium selection via current sheet relaxation and guide field amplification , 2023, Nature Communications.

[2]  E. Grigorenko,et al.  Equilibrium Configurations of Super‐Thin Current Sheets in Space Plasma: Characteristic Scaling of Multilayer Structures , 2022, Journal of Geophysical Research: Space Physics.

[3]  C. Paranicas,et al.  Radial and Local Time Variations in the Thickness of Jupiter's Magnetospheric Current Sheet , 2022, Journal of Geophysical Research: Space Physics.

[4]  V. Angelopoulos,et al.  Configuration of Magnetotail Current Sheet Prior to Magnetic Reconnection Onset , 2022, 2202.09539.

[5]  B. Mauk,et al.  Statistics on Jupiter’s Current Sheet With Juno Data: Geometry, Magnetic Fields and Energetic Particles , 2021, Journal of Geophysical Research: Space Physics.

[6]  R. Lysak,et al.  The Jovian Ionospheric Alfvén Resonator and Auroral Particle Acceleration , 2021, Journal of Geophysical Research: Space Physics.

[7]  R. Wilson,et al.  Survey of Juno Observations in Jupiter's Plasma Disk: Density , 2021, Journal of Geophysical Research: Space Physics.

[8]  M. Sitnov,et al.  Multiscale Nature of the Magnetotail Reconnection Onset , 2021, Geophysical Research Letters.

[9]  J. Burch,et al.  Collisionless relaxation of a disequilibrated current sheet and implications for bifurcated structures , 2021, Nature Communications.

[10]  C. Russell,et al.  Magnetotail reconnection onset caused by electron kinetics with a strong external driver , 2020, Nature Communications.

[11]  J. Connerney,et al.  A Jovian Magnetodisc Model for the Juno Era , 2020, Journal of geophysical research. Space physics.

[12]  I. Vasko,et al.  Superthin current sheets supported by anisotropic electrons , 2020 .

[13]  B. Mauk,et al.  Plasma Sheet Boundary Layer in Jupiter's Magnetodisk as Observed by Juno , 2020, Journal of Geophysical Research: Space Physics.

[14]  P. Louarn,et al.  The Generation of Upward‐Propagating Whistler Mode Waves by Electron Beams in the Jovian Polar Regions , 2020, Journal of Geophysical Research: Space Physics.

[15]  T. Neukirch,et al.  A family of Vlasov–Maxwell equilibrium distribution functions describing a transition from the Harris sheet to the force-free Harris sheet , 2020, Journal of Plasma Physics.

[16]  E. Parker,et al.  MAGNETIC RECONNECTION , 2020, Plasma Physics for Astrophysics.

[17]  R. Wilson,et al.  Survey of Ion Properties in Jupiter's Plasma Sheet: Juno JADE‐I Observations , 2020, Journal of Geophysical Research: Space Physics.

[18]  J. Connerney,et al.  Energetic Particles and Acceleration Regions Over Jupiter's Polar Cap and Main Aurora: A Broad Overview , 2020, Journal of Geophysical Research: Space Physics.

[19]  R. Wilson,et al.  Method to Derive Ion Properties From Juno JADE Including Abundance Estimates for O+ and S2+ , 2020, Journal of Geophysical Research: Space Physics.

[20]  T. Neukirch,et al.  Kinetic Models of Tangential Discontinuities in the Solar Wind , 2020, The Astrophysical Journal.

[21]  V. Angelopoulos,et al.  Ion Nongyrotropy in Solar Wind Discontinuities , 2020, The Astrophysical Journal.

[22]  V. Angelopoulos,et al.  Contribution of Anisotropic Electron Current to the Magnetotail Current Sheet as a Function of Location and Plasma Conditions , 2020, Journal of Geophysical Research: Space Physics.

[23]  R. Wilson,et al.  Energy Flux and Characteristic Energy of Electrons Over Jupiter's Main Auroral Emission , 2019, Journal of Geophysical Research: Space Physics.

[24]  R. Wilson,et al.  Energetic Oxygen and Sulfur Charge States in the Outer Jovian Magnetosphere: Insights From the Cassini Jupiter Flyby , 2019, Geophysical research letters.

[25]  M. Velli,et al.  Explosive Magnetotail Activity , 2019, Space Science Reviews.

[26]  P. Delamere,et al.  Kinetic Simulations of Electron Acceleration by Dispersive Scale Alfvén Waves in Jupiter's Magnetosphere , 2019, Geophysical Research Letters.

[27]  V. Angelopoulos,et al.  The Hall Electric Field in Earth's Magnetotail Thin Current Sheet , 2019, Journal of Geophysical Research: Space Physics.

[28]  J. G. Sample,et al.  The Space Physics Environment Data Analysis System (SPEDAS) , 2019, Space Science Reviews.

[29]  B. Mauk,et al.  Wave‐Particle Interaction of Alfvén Waves in Jupiter's Magnetosphere: Auroral and Magnetospheric Particle Acceleration , 2018, Journal of Geophysical Research: Space Physics.

[30]  J Vandegriff,et al.  Electron Acceleration to MeV Energies at Jupiter and Saturn , 2018, Journal of geophysical research. Space physics.

[31]  H. Malova,et al.  Model of a Thin Current Sheet in the Earth’s Magnetotail with a Kinetic Description of Magnetized Electrons , 2018, Plasma Physics Reports.

[32]  A. Lukin,et al.  Two-dimensional self-similar plasma equilibria , 2018 .

[33]  M. Kivelson,et al.  Planetary Magnetospheres , 2018 .

[34]  V. Angelopoulos,et al.  Intense Cross‐Tail Field‐Aligned Currents in the Plasma Sheet at Lunar Distances , 2017, 1711.08605.

[35]  C. Hansen,et al.  Magnetospheric Science Objectives of the Juno Mission , 2017 .

[36]  J. Rouzaud,et al.  The Jovian Auroral Distributions Experiment (JADE) on the Juno Mission to Jupiter , 2017 .

[37]  A. Adriani,et al.  Discrete and broadband electron acceleration in Jupiter’s powerful aurora , 2017, Nature.

[38]  P. Louarn,et al.  Plasma environment at the dawn flank of Jupiter's magnetosphere: Juno arrives at Jupiter , 2017 .

[39]  J. Connerney,et al.  Juno observations of energetic charged particles over Jupiter's polar regions: Analysis of monodirectional and bidirectional electron beams , 2017 .

[40]  J. Gérard,et al.  Jupiter’s magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits , 2017, Science.

[41]  V. Angelopoulos,et al.  Mars's magnetotail: Nature's current sheet laboratory , 2017 .

[42]  R. Schnurr,et al.  The Juno Magnetic Field Investigation , 2017 .

[43]  A. Runov,et al.  Electron currents supporting the near‐Earth magnetotail during current sheet thinning , 2017 .

[44]  Ying Lin,et al.  Hall effect control of magnetotail dawn‐dusk asymmetry: A three‐dimensional global hybrid simulation , 2016 .

[45]  V. Angelopoulos,et al.  Effects of electron pressure anisotropy on current sheet configuration , 2016 .

[46]  V. Merkin,et al.  Generalized magnetotail equilibria: Effects of the dipole field, thin current sheets, and magnetic flux accumulation , 2016 .

[47]  B. Mauk,et al.  Charge states of energetic oxygen and sulfur ions in Jupiter's magnetosphere , 2016 .

[48]  M. Hesse,et al.  Particle-in-Cell Simulations of Collisionless Magnetic Reconnection with a Non-Uniform Guide Field , 2015, 1512.07844.

[49]  B. Jakosky,et al.  Magnetotail dynamics at Mars: Initial MAVEN observations , 2015 .

[50]  S. Barabash,et al.  The flapping motion of the Venusian magnetotail: Venus Express observations , 2015 .

[51]  A. Otto,et al.  Thin current sheet formation in response to the loading and the depletion of magnetic flux during the substorm growth phase , 2015 .

[52]  H. Malova,et al.  Thin current sheets with strong bell-shape guide field: Cluster observations and models with beams , 2014 .

[53]  J. Birn,et al.  Onset of reconnection in the near magnetotail: PIC simulations , 2014 .

[54]  M. Freeman,et al.  Large-Scale Structure and Dynamics of the Magnetotails of Mercury, Earth, Jupiter and Saturn , 2014, Space Science Reviews.

[55]  S. Kasahara,et al.  Thin current sheets in the Jovian magnetotail , 2014 .

[56]  I. J. Rae,et al.  Sources of electron pitch angle anisotropy in the magnetotail plasma sheet , 2013 .

[57]  L. Zelenyi,et al.  Kinetic Structure of Current Sheets in the Earth Magnetotail , 2013 .

[58]  R. Nakamura,et al.  Intense current sheets in the magnetotail: Peculiarities of electron physics , 2013 .

[59]  P. Louarn,et al.  The Jovian Auroral Distributions Experiment (JADE) on the Juno Mission to Jupiter , 2013, Space Science Reviews.

[60]  H. Malova,et al.  Kinetic models of two-dimensional plane and axially symmetric current sheets: Group theory approach , 2013 .

[61]  S. Kasahara,et al.  Field-aligned beams and reconnection in the jovian magnetotail , 2012, 1210.4371.

[62]  J. Birn,et al.  Kinetic Model of Electric Potentials in Localized Collisionless Plasma Structures under Steady Quasi-gyrotropic Conditions , 2012 .

[63]  H. Malova,et al.  Kinetic models of current sheets with a sheared magnetic field , 2012 .

[64]  D. Baker,et al.  Particle Acceleration in the Magnetotail and Aurora , 2012 .

[65]  Wolfgang Baumjohann,et al.  Two types of tangential magnetopause current sheets: Cluster observations and theory , 2011 .

[66]  H. Malova,et al.  Thin current sheets in collisionless plasma: Equilibrium structure, plasma instabilities, and particle acceleration , 2011 .

[67]  A. Artemyev A model of one-dimensional current sheet with parallel currents and normal component of magnetic field , 2011 .

[68]  L. Zelenyi,et al.  Earthward electric field in the magnetotail: Cluster observations and theoretical estimates , 2010 .

[69]  R. Nakamura,et al.  Thin embedded current sheets: Cluster observations of ion kinetic structure and analytical models , 2009 .

[70]  C. Watt,et al.  Electron trapping in shear Alfvén waves that power the aurora. , 2009, Physical review letters.

[71]  T. Neukirch,et al.  On One-Dimensional Force-Free Vlasov-Maxwell Equilibria , 2008, 0811.4604.

[72]  C. Cohen,et al.  Charge states of energetic ions in Jupiter's radiation belt inferred from absorption microsignatures of Io , 2009 .

[73]  Rumi Nakamura,et al.  Cluster observations of an ion-scale current sheet in the magnetotail under the presence of a guide field , 2008 .

[74]  Wolfgang Baumjohann,et al.  Thinning and stretching of the plasma sheet , 2007 .

[75]  R. Ergun,et al.  How important are dispersive Alfvén waves for auroral particle acceleration? , 2007 .

[76]  Parvez N. Guzdar,et al.  Structure and dynamics of a new class of thin current sheets , 2006 .

[77]  Rumi Nakamura,et al.  Local structure of the magnetotail current sheet: 2001 Cluster observations , 2006 .

[78]  K. Khurana,et al.  Global structure of Jupiter's magnetospheric current sheet , 2005 .

[79]  M. Kivelson,et al.  Jovian plasma sheet morphology: particle and field observations by the Galileo spacecraft , 2005 .

[80]  A. Lui,et al.  A class of exact two-dimensional kinetic current sheet equilibria , 2005 .

[81]  M. Goldman,et al.  Auroral particle acceleration by strong double layers: The upward current region , 2004 .

[82]  A. Sharma,et al.  Nonlinear equilibrium structure of thin currents sheets: influence of electron pressure anisotropy , 2004 .

[83]  Edmond C. Roelof,et al.  Energetic ion characteristics and neutral gas interactions in Jupiter's magnetosphere , 2004 .

[84]  S. Krimigis,et al.  Energetic particle observations in the vicinity of Jupiter: Cassini MIMI/LEMMS results , 2004 .

[85]  J. Birn,et al.  Thin electron current sheets and their relation to auroral potentials , 2004 .

[86]  J. Birn,et al.  Thin current sheets and loss of equilibrium: Three‐dimensional theory and simulations , 2004 .

[87]  T. Hill,et al.  The Io neutral clouds and plasma torus , 2004 .

[88]  M. Kivelson,et al.  The Configuration of Jupiter ’ s Magnetosphere , 2003 .

[89]  K. Khurana,et al.  Observations of thermal plasmas in Jupiter's magnetotail , 2002 .

[90]  J. Birn,et al.  Models of two‐dimensional embedded thin current sheets from Vlasov theory , 2001 .

[91]  L. Yin,et al.  Kinetic aspects of the Jovian current sheet , 2000 .

[92]  B. Mauk,et al.  Galileo energetic particles detector measurements of hot ions in the neutral sheet region of Jupiter's magnetodisk , 1999 .

[93]  J. Connerney,et al.  New models of Jupiter's magnetic field constrained by the Io flux tube footprint , 1998 .

[94]  J. Birn,et al.  On the ion-scale structure of thin current sheets in the magnetotail , 1998 .

[95]  G. Voigt,et al.  Loss of MHD equilibrium caused by the enhancement of the magnetic By component in Earth's magnetotail , 1992 .

[96]  Fran Bagenal,et al.  Giant planet magnetospheres , 1992 .

[97]  G. Zimbardo A self-consistent picture of Jupiter's nightside magnetosphere , 1989 .

[98]  R. Hilmer,et al.  The effects of a magnetic By component on geomagnetic tail equilibria , 1987 .

[99]  A. Taktakishvili,et al.  Spontaneous magnetic reconnection mechanisms in plasma , 1987 .

[100]  A. Cheng Thin, rotating plasma disks , 1983 .

[101]  E. W. Hones,et al.  Bi‐directional electron pitch angle anisotropy in the plasma sheet , 1981 .

[102]  S. Syrovatskii Pinch Sheets and Reconnection in Astrophysics , 1981 .

[103]  Travis W. Hill,et al.  Inertial limit on corotation , 1979 .

[104]  S. Cowley,et al.  A note on adiabatic solutions of the one-dimensional current sheet problem , 1979 .

[105]  T. Hill,et al.  Centrifugal distortion of the Jovian magnetosphere by an equatorially confined current sheet , 1978 .

[106]  S. Cowley The effect of pressure anisotropy on the equilibrium structure of magnetic current sheets , 1978 .

[107]  J. Drake,et al.  Kinetic theory of tearing instabilities , 1977 .

[108]  R. Pellat,et al.  Magnetic merging in collisionless plasmas , 1976 .

[109]  R. Wolf,et al.  On the balance of stresses in the plasma sheet , 1972 .

[110]  P. D. Hudson,et al.  Discontinuities in an anisotropic plasma and their identification in the solar wind , 1970 .

[111]  L. J. Cahill,et al.  Explorer 12 observations of the magnetopause current layer , 1968 .

[112]  B. Sonnerup,et al.  Large Amplitude Whistler Waves in a Hot Collision‐Free Plasma , 1967 .