3D LED and IC wafer level packaging

Purpose – The purpose of this paper is to propose new 3D light emitting diodes (LED) and integrated circuits (IC) integration packages.Design/methodology/approach – These packages consist of the multi‐LEDs and active IC chip such as the application specific IC, LED driver, processor, memory, radio frequency, sensor, or power controller in a 3D manner. The assembly processes of these packages are also presented and discussed.Findings – The advantages of these 3D integration packages are found to be: better performance, lower cost, less footprint, lighter package, and smaller form factor.Originality/value – A thermal management system for 3D IC and LEDs integration packages is proposed.

[1]  Roshan Weerasekera,et al.  Wire-bonded through-silicon vias with low capacitive substrate coupling , 2011 .

[2]  John H. Lau,et al.  Overview and outlook of through‐silicon via (TSV) and 3D integrations , 2011 .

[3]  Siow Pin Tan,et al.  Integrated Liquid Cooling Systems for 3-D Stacked TSV Modules , 2010, IEEE Transactions on Components and Packaging Technologies.

[4]  Xiaowu Zhang,et al.  Development of 3-D Silicon Module With TSV for System in Packaging , 2010, IEEE Transactions on Components and Packaging Technologies.

[5]  C. Selvanayagam,et al.  Nonlinear Thermal Stress/Strain Analyses of Copper Filled TSV (Through Silicon Via) and Their Flip-Chip Microbumps , 2009, IEEE Transactions on Advanced Packaging.

[6]  John H. Lau,et al.  Three dimensional interconnects with high aspect ratio TSVs and fine pitch solder microbumps , 2009, 2009 59th Electronic Components and Technology Conference.

[7]  John H. Lau,et al.  Development of through silicon via (TSV) interposer technology for large die (21×21mm) fine-pitch Cu/low-k FCBGA package , 2009, 2009 59th Electronic Components and Technology Conference.

[8]  J. Lau,et al.  Thermal management of 3D IC integration with TSV (through silicon via) , 2009, 2009 59th Electronic Components and Technology Conference.

[9]  John H. Lau,et al.  3D packaging with through ilicon via (TSV) for electrical and fluidic interconnections , 2009, 2009 59th Electronic Components and Technology Conference.

[10]  D. Kwong,et al.  Study of 15µm pitch solder microbumps for 3D IC integration , 2009, 2009 59th Electronic Components and Technology Conference.

[11]  D. Pinjala,et al.  Fabrication of Silicon Carriers With TSV Electrical Interconnections and Embedded Thermal Solutions for High Power 3-D Packages , 2009, IEEE Transactions on Components and Packaging Technologies.

[12]  D. Pinjala,et al.  Fluidic Interconnects in Integrated Liquid Cooling Systems for 3-D Stacked TSV Modules , 2008, 2008 10th Electronics Packaging Technology Conference.

[13]  Peter Ramm,et al.  3D Integration: Technology and Applications , 2008 .

[14]  V. Lee,et al.  Development of 3D silicon module with TSV for system in packaging , 2008, 2008 58th Electronic Components and Technology Conference.

[15]  Beom-Hoan O,et al.  The effect of KOH and KOH/IPA etching on the surface roughness of the silicon mold to be used for polymer waveguide imprinting , 2008, SPIE OPTO.

[16]  Kazuo Sato,et al.  Fabrication techniques of convex corners in a (1 0 0)-silicon wafer using bulk micromachining: a review , 2007 .

[17]  Michael R. Krames,et al.  High-power AlGaInN flip-chip light-emitting diodes , 2001 .

[18]  T. T. Veenstra,et al.  A light absorption cell for microTAS with KOH/IPA etched 45 degrees mirrors in silicon , 2001 .

[19]  Shuji Nakamura,et al.  Characteristics Of Room Temperature-CW Operated InGaN Multi-Quantum-Well-Structure Laser Diodes , 1997 .

[20]  S. Nakamura,et al.  Room‐temperature continuous‐wave operation of InGaN multi‐quantum‐well structure laser diodes , 1996 .

[21]  Takashi Mukai,et al.  Superbright Green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes , 1995 .

[22]  Shuji Nakamura,et al.  High‐power InGaN single‐quantum‐well‐structure blue and violet light‐emitting diodes , 1995 .

[23]  S. Nakamura,et al.  High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures , 1995 .

[24]  Shuji Nakamura,et al.  Growth of InxGa(1−x)N compound semiconductors and high-power InGaN/AlGaN double heterostructure violet-light-emitting diodes , 1994 .

[25]  S. Nakamura,et al.  Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes , 1994 .

[26]  Takashi Mukai,et al.  P-GaN/N-InGaN/N-GaN Double-Heterostructure Blue-Light-Emitting Diodes , 1993 .

[27]  Takashi Mukai,et al.  High-Quality InGaN Films Grown on GaN Films , 1992 .

[28]  Takashi Mukai,et al.  Si- and Ge-Doped GaN Films Grown with GaN Buffer Layers , 1992 .

[29]  Y. Bäcklund,et al.  New shapes in (100) Si using KOH and EDP etches , 1992 .

[30]  Takashi Mukai,et al.  Hole Compensation Mechanism of P-Type GaN Films , 1992 .

[31]  S. Nakamura,et al.  Thermal Annealing Effects on P-Type Mg-Doped GaN Films , 1992 .

[32]  Takashi Mukai,et al.  High-Power GaN P-N Junction Blue-Light-Emitting Diodes , 1991 .

[33]  S. Nakamura,et al.  Highly P-Typed Mg-Doped GaN Films Grown with GaN Buffer Layers , 1991 .

[34]  Shuji Nakamura,et al.  GaN Growth Using GaN Buffer Layer , 1991 .

[35]  Shuji Nakamura,et al.  Novel metalorganic chemical vapor deposition system for GaN growth , 1991 .

[36]  H. J. Round A Note on Carborundum , 1991 .

[37]  M. Craford,et al.  Radiative recombination mechanisms in GaAsP diodes with and without nitrogen doping , 1972 .

[38]  N. Holonyak,et al.  COHERENT (VISIBLE) LIGHT EMISSION FROM Ga(As1−xPx) JUNCTIONS , 1962 .

[39]  O. V. Lossev CII. Luminous carborundum detector and detection effect and oscillations with crystals , 1928 .