Entropy numbers of Besov classes of generalized smoothness on the sphere

We investigate the asymptotic behavior of the entropy numbers of Besov classes $$BB_{p,\theta }^\Omega \left( {\mathbb{S}^{d - 1} } \right)$$ of generalized smoothness on the sphere in $$L_q \left( {\mathbb{S}^{d - 1} } \right)$$ for 1 ≤ p, q, θ ≤ ∞, and get their asymptotic orders. We also obtain the exact orders of entropy numbers of Sobolev classes $$BW_p^r \left( {\mathbb{S}^{d - 1} } \right)$$ in $$L_q \left( {\mathbb{S}^{d - 1} } \right)$$ when p and/or q is equal to 1 or ∞. This provides the last piece as far as exact orders of entropy numbers of $$BW_p^r \left( {\mathbb{S}^{d - 1} } \right)$$ in $$L_q \left( {\mathbb{S}^{d - 1} } \right)$$ are concerned.

[1]  W. Sickel,et al.  Entropy Numbers of Embeddings of Weighted Besov Spaces , 2005 .

[2]  D. Haroske,et al.  Entropy and Approximation Numbers of Embeddings of Function Spaces with Muckenhoupt Weights, I , 2008 .

[3]  D. Haroske,et al.  Entropy numbers of embeddings of function spaces with Muckenhoupt weights, III. Some limiting cases , 2011 .

[4]  Susana D. Moura,et al.  Continuity Envelopes of Spaces of Generalized Smoothness in the Critical Case , 2009 .

[5]  Feng Dai,et al.  Approximation of smooth functions on compact two-point homogeneous spaces , 2005, math/0510007.

[6]  Entropy Numbers of Sobolev and Besov Classes on Homogeneous Spaces , 2005 .

[7]  Michael T. Orchard,et al.  On the importance of combining wavelet-based nonlinear approximation with coding strategies , 2002, IEEE Trans. Inf. Theory.

[8]  Susana D. Moura,et al.  Function spaces of generalised smoothness , 2001 .

[9]  A. Kushpel,et al.  Entropy and Widths of Multiplier Operators on Two-Point Homogeneous Spaces , 2012 .

[10]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[11]  Hans-Gerd Leopold,et al.  Entropy numbers of embeddings of some 2-microlocal Besov spaces , 2011, J. Approx. Theory.

[12]  Susana D. Moura,et al.  Continuity envelopes and sharp embeddings in spaces of generalized smoothness , 2008 .

[13]  Thomas Kühn,et al.  Approximation and entropy numbers in Besov spaces of generalized smoothness , 2009, J. Approx. Theory.

[14]  H. Triebel,et al.  Function Spaces, Entropy Numbers, Differential Operators: Function Spaces , 1996 .

[15]  Hans-Gerd Leopold,et al.  Characterisations of function spaces of generalised smoothness , 2006 .

[16]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[17]  W. Sickel,et al.  Entropy numbers of embeddings of weighted Besov spaces III. Weights of logarithmic type , 2006 .

[18]  C. Schütt Entropy numbers of diagonal operators between symmetric Banach spaces , 1984 .

[19]  Feng Dai,et al.  Multivariate polynomial inequalities with respect to doubling weights and A∞ weights , 2006 .

[20]  Felipe Cucker,et al.  On the mathematical foundations of learning , 2001 .

[21]  Heping Wang,et al.  Widths of Besov classes of generalized smoothness on the sphere , 2012, J. Complex..

[22]  M. Birman,et al.  PIECEWISE-POLYNOMIAL APPROXIMATIONS OF FUNCTIONS OF THE CLASSES $ W_{p}^{\alpha}$ , 1967 .

[23]  D. Donoho Unconditional Bases and Bit-Level Compression , 1996 .

[24]  H. König Eigenvalue Distribution of Compact Operators , 1986 .

[25]  Thomas Kühn,et al.  A Lower Estimate for Entropy Numbers , 2001, J. Approx. Theory.

[26]  Hrushikesh Narhar Mhaskar,et al.  Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature , 2001, Math. Comput..

[27]  Thomas Kühn,et al.  Entropy Numbers of Embeddings of Besov Spaces in Generalized Lipschitz Spaces , 2001, J. Approx. Theory.

[28]  Pencho Petrushev,et al.  Localized Tight Frames on Spheres , 2006, SIAM J. Math. Anal..