Axial strength of circular concrete-filled steel tube columns — DOE approach

Abstract This paper presents the effect of changes in diameter of the steel tube ( D ), wall thickness of the steel tube ( t ), strength of in-fill concrete ( f c u ), and length of the tube ( L ) on ultimate axial load ( P u e ) and axial shortening at the ultimate point ( δ u e ) of circular Concrete Filled steel Tubes (CFT). Taguchi’s approach with an L9 orthogonal array is used to reduce the number of experiments. With the help of initial experiments, linear regression models are developed to predict the axial load and the axial shortening at the ultimate point. A total of 243 circular CFT samples are tested to verify the accuracy of these models at three factors with three levels. The experimental results are analyzed using Analysis Of Variance to investigate the most influencing factor on strength and axial shortening of CFT samples. Comparisons are made with predicted column strengths using the existing design codes, AISC-LRFD-2005 and EC4-1994.

[1]  Atorod Azizinamini,et al.  Behavior and strength of circular concrete-filled tube columns , 2002 .

[2]  M. S. Kumar,et al.  Experimental and computational study of concrete filled steel tubular columns under axial loads , 2007 .

[3]  Dennis Lam,et al.  Axial capacity of circular concrete-filled tube columns , 2004 .

[4]  K. F. Chung,et al.  Composite column design to Eurocode 4 : based on DD ENV 1994-1-1: 1994 Eurocode 4: design of composite steel and concrete structures: part 1.1: general rules and rules for buildings , 1994 .

[5]  Toshiaki Fujimoto,et al.  BEHAVIOR OF ECCENTRICALLY LOADED CONCRETE-FILLED STEEL TUBULAR COLUMNS , 2004 .

[6]  Kamel Chaoui,et al.  An experimental behaviour of concrete-filled steel tubular columns , 2005 .

[7]  N. E. Shanmugam,et al.  State of the art report on steel–concrete composite columns , 2001 .

[8]  Khandaker M. A. Hossain,et al.  Axial load behaviour of thin walled composite columns , 2003 .

[9]  Hiroyuki Nakahara,et al.  Behavior of centrally loaded concrete-filled steel-tube short columns , 2004 .

[10]  Stephen P. Schneider,et al.  Axially Loaded Concrete-Filled Steel Tubes , 1998 .

[11]  W. Oyawa,et al.  Polymer concrete-filled steel tubes under axial compression , 2001 .

[12]  N. E. Shanmugam,et al.  An analytical model for thin-walled steel box columns with concrete in-fill , 2002 .

[13]  Lin-Hai Han,et al.  Tests on Stub Columns of Concrete-filled RHS Sections , 2002 .

[14]  Manojkumar V. Chitawadagi,et al.  Strength deformation behaviour of circular concrete filled steel tubes subjected to pure bending , 2009 .

[15]  P. Devadas Manoharan,et al.  Experimental behaviour of eccentrically loaded slender circular hollow steel columns in-filled with fibre reinforced concrete , 2006 .

[16]  Satyabodh M. Kulkarni,et al.  Axial capacity of rectangular concrete-filled steel tube columns – DOE approach , 2010 .

[17]  Jerome F. Hajjar,et al.  A Synopsis of Studies of the Monotonic and Cyclic Behavior of Concrete-Filled Steel Tube Members, Connections, and Frames , 2008 .

[18]  Lin-Hai Han,et al.  Strength and ductility of stiffened thin-walled hollow steel structural stub columns filled with concrete , 2008 .

[19]  Dennis Lam,et al.  Experimental study on concrete filled square hollow sections , 2004 .

[20]  Russell Q. Bridge,et al.  DESIGN OF CIRCULAR THIN-WALLED CONCRETE FILLED STEEL TUBES , 2000 .