Microfabrication and Applications of Opto-Microfluidic Sensors

A review of research activities on opto-microfluidic sensors carried out by the research groups in Canada is presented. After a brief introduction of this exciting research field, detailed discussion is focused on different techniques for the fabrication of opto-microfluidic sensors, and various applications of these devices for bioanalysis, chemical detection, and optical measurement. Our current research on femtosecond laser microfabrication of optofluidic devices is introduced and some experimental results are elaborated. The research on opto-microfluidics provides highly sensitive opto-microfluidic sensors for practical applications with significant advantages of portability, efficiency, sensitivity, versatility, and low cost.

[1]  Gilbert C. Walker,et al.  Exploring Microfluidic Routes to Microgels of Biological Polymers , 2007 .

[2]  Zhiyi Zhang,et al.  Optical simulation, design, and optimization of a microchip-based flow cytometer , 2008, Photonics North.

[3]  Guoqing Hu,et al.  Development of a novel electrokinetically driven microfluidic immunoassay for the detection of Helic , 2005 .

[4]  David Sinton,et al.  Polarization-dependent sensing of a self-assembled monolayer using biaxial nanohole arrays , 2008 .

[5]  G. Whitesides The origins and the future of microfluidics , 2006, Nature.

[6]  Karan V. I. S. Kaler,et al.  Identification of respiratory pathogen Bordetella Pertussis using integrated microfluidic chip technology , 2008 .

[7]  Qing Huo Liu,et al.  Surface plasmon resonance in nanostructured metal films under the Kretschmann configuration , 2009 .

[8]  Andrew C. Hillier,et al.  Wavelength tunable surface plasmon resonance-enhanced optical transmission through a chirped diffraction grating. , 2010, Analytical chemistry.

[9]  Kevin Welford,et al.  Surface plasmon-polaritons and their uses , 1991 .

[10]  D. Sinton,et al.  Theory of dielectric micro-sphere dynamics in a dual-beam optical trap. , 2008, Optics express.

[11]  P. Dumais,et al.  Microchannel-Based Refractive Index Sensors Monolithically Integrated With Silica Waveguides: Structures and Sensitivities , 2008, IEEE Sensors Journal.

[12]  N. Munce,et al.  Microfabricated system for parallel single-cell capillary electrophoresis. , 2004, Analytical chemistry.

[13]  Benjamin R. Watts,et al.  Fabrication of Photonic/Microfluidic Integrated Devices Using an Epoxy Photoresist , 2010 .

[14]  James N. McMullin,et al.  PDMS biochips with integrated waveguides , 2010 .

[15]  Aaron R Wheeler,et al.  Microcontact printing-based fabrication of digital microfluidic devices. , 2006, Analytical chemistry.

[16]  P. Lu,et al.  Femtosecond laser microstructured fibre refractive index sensor with temperature compensation , 2010 .

[17]  Paul C H Li,et al.  An acoustic wave sensor incorporated with a microfluidic chip for analyzing muscle cell contraction. , 2003, The Analyst.

[18]  Philippe Schmitt-Kopplin,et al.  Capillary electrophoresis : methods and protocols , 2008 .

[19]  Dammika P Manage,et al.  Analysis of mitochondrial DNA in microfluidic systems. , 2005, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[20]  Christopher Lausted,et al.  Parallel microfluidic surface plasmon resonance imaging arrays. , 2010, Lab on a chip.

[21]  Aaron R Wheeler,et al.  Pluronic additives: a solution to sticky problems in digital microfluidics. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[22]  George K. Knopf,et al.  Rapid fabrication of tooling for microfluidic devices via laser micromachining and hot embossing , 2008 .

[23]  A. Delage,et al.  Sensitive Label-Free Biomolecular Detection Using Thin Silicon Waveguides , 2008 .

[24]  Alex Rhee,et al.  Convergence of quantum dot barcodes with microfluidics and signal processing for multiplexed high-throughput infectious disease diagnostics. , 2007, Nano letters.

[25]  N. Nguyen,et al.  Fundamentals and Applications of Microfluidics , 2002 .

[26]  B. Gould,et al.  Use of enzymes in immunoassay techniques. A review , 1984 .

[27]  B Cui,et al.  Enhanced surface plasmon resonance imaging detection of DNA hybridization on periodic gold nanoposts. , 2007, Optics letters.

[28]  G. Whitesides,et al.  Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. , 2005, Angewandte Chemie.

[29]  Siegfried Janz,et al.  Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide. , 2010, Optics express.

[30]  David Sinton,et al.  Optohydrodynamic theory of particles in a dual-beam optical trap , 2008 .

[31]  A. M. Jorgensen,et al.  Lab-on-a-chip with integrated optical transducers. , 2006, Lab on a chip.

[32]  Jonathan Masson,et al.  HIGH RESOLUTION MICROFLUIDIC REFRACTOMETER FOR BIOMEDICAL APPLICATIONS , 2009 .

[33]  David Sinton,et al.  Particle-optical self-trapping , 2007 .

[34]  Zhiyi Zhang,et al.  Optical Manipulation of Microparticles in an SU-8/PDMS Hybrid Microfluidic Chip Incorporating a Monolithically Integrated On-Chip Lens Set , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[35]  Xuantao Su,et al.  Wide‐angle light‐scattering differentiation of organelle‐size particle distributions in whole cells , 2010, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[36]  Karan V. I. S. Kaler,et al.  An integrated genetic analysis microfluidic platform with valves and a PCR chip reusability method to avoid contamination , 2007 .

[37]  James N. McMullin,et al.  Development of an optomicrofluidic flow cytometer for the sorting of stem cells from blood samples , 2009, Photonics North.

[38]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[39]  Aaron R. Wheeler,et al.  Rapid Prototyping in Copper Substrates for Digital Microfluidics , 2007 .

[40]  Teodor Veres,et al.  IMPROVING THE OPERATION OF ELECTROWETTING-BASED DIGITAL MICRO- FLUIDIC SYSTEMS BY USING WATER-OIL CORE- SHELL DROPLETS , 2008 .

[41]  Robert Fedosejevs,et al.  Development of laser-induced breakdown spectroscopy for microanalysis applications , 2008 .

[42]  Govind V Kaigala,et al.  Automated screening using microfluidic chip‐based PCR and product detection to assess risk of BK virus‐associated nephropathy in renal transplant recipients , 2006, Electrophoresis.

[43]  D. Sinton,et al.  Nanohole arrays in metal films as optofluidic elements: progress and potential , 2008 .

[44]  D. J. Harrison,et al.  Integrated self‐calibration via electrokinetic solvent proportioning for microfluidic immunoassays , 2001, Electrophoresis.

[45]  Teodor Veres,et al.  Two-dimensional droplet-based surface plasmon resonance imaging using electrowetting-on-dielectric microfluidics. , 2009, Lab on a chip.

[46]  D. J. Harrison,et al.  A glassy carbon microfluidic device for electrospray mass spectrometry. , 2004, Analytical chemistry.

[47]  Sophia Adamia,et al.  Sensitive detection using microfluidics technology of single cell PCR products from high and low abundance IgH VDJ templates in multiple myeloma. , 2005, Journal of immunological methods.

[48]  Gregor Ocvirk,et al.  Integrated microfluidic electrophoresis system for analysis of genetic materials using signal amplification methods. , 2002, Analytical chemistry.

[49]  M. Tabrizian,et al.  Enzymatically-generated fluorescent detection in micro-channels with internal magnetic mixing for the development of parallel microfluidic ELISA. , 2006, Lab on a chip.

[50]  Pun Pang Shiu,et al.  Fabrication of polymer microfluidic devices with 3D microfeatures that have near optical surface quality , 2008, 2008 1st Microsystems and Nanoelectronics Research Conference.

[51]  Luke P. Lee,et al.  Optofluidics: Fundamentals, Devices, and Applications , 2009 .

[52]  Jason R. Grenier,et al.  Femtosecond laser written optofluidic sensor: Bragg Grating Waveguide evanescent probing of microfluidic channel. , 2009, Optics express.

[53]  J. S. Aitchison,et al.  A photonic nano-Bragg grating device integrated with microfluidic channels for bio-sensing applications , 2009 .

[54]  Josiane P Lafleur,et al.  Miniaturised centrifugal solid phase extraction platforms for in-field sampling, pre-concentration and spectrometric detection of organic pollutants in aqueous samples. , 2010, Talanta.

[55]  Wei Li,et al.  Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly. , 2006, Journal of the American Chemical Society.

[56]  K. Sooley,et al.  Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature , 2009 .

[57]  Patrick Dumais,et al.  Integrated optical sensor using a liquid-core waveguide in a Mach-Zehnder interferometer. , 2008, Optics express.

[58]  David Sinton,et al.  Attomolar protein detection using in-hole surface plasmon resonance. , 2009, Journal of the American Chemical Society.

[59]  M. Tabrizian,et al.  Biochip functionalization using electrowetting-on-dielectric digital microfluidics for surface plasmon resonance imaging detection of DNA hybridization. , 2009, Biosensors & bioelectronics.

[60]  Laurie Brown,et al.  Epoxy resins as stamps for hot embossing of microstructures and microfluidic channels , 2005 .

[61]  Javad Alirezaie,et al.  Development of a novel microfluidic immunoassay for the detection of Helicobacter pylori infection. , 2004, The Analyst.

[62]  D. Sinton,et al.  Flow dependent optofluidic particle trapping , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[63]  J Taylor,et al.  Development of a multichannel microfluidic analysis system employing affinity capillary electrophoresis for immunoassay. , 2001, Analytical chemistry.

[64]  Jenny Clark,et al.  Femtosecond laser fabrication of microfluidic channels for organic photonic devices. , 2009, Applied optics.

[65]  Andreas Tünnermann,et al.  Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses. , 2005, Optics letters.

[66]  Javad Alirezaie,et al.  Development of a Nanoparticle-Labeled Microfluidic Immunoassay for Detection of Pathogenic Microorganisms , 2005, Clinical Diagnostic Laboratory Immunology.

[67]  Claire L. Callender,et al.  Temperature sensors and refractometers using liquid-core waveguide structures monolithically integrated in silica-on-silicon , 2008, Photonics North.

[68]  Bin Wang,et al.  Surface characterization using chemical force microscopy and the flow performance of modified polydimethylsiloxane for microfluidic device applications , 2003, Electrophoresis.

[69]  D. Sinton,et al.  Optofluidic sieving with flow-through plasmonic nanohole arrays , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[70]  Eric D Salin,et al.  Magnetically driven solid sample preparation for centrifugal microfluidic devices. , 2009, Analytical chemistry.

[71]  Christelle Monat,et al.  Integrated optofluidics: A new river of light , 2007 .

[72]  D. Psaltis,et al.  Developing optofluidic technology through the fusion of microfluidics and optics , 2006, Nature.

[73]  S. Haxha,et al.  Design and optimization of a novel surface plasmon resonance biosensor based on Otto configuration. , 2009, Optics express.

[74]  Alan Arai,et al.  Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate. , 2005, Optics express.

[75]  Eric D Salin,et al.  Rapid simultaneous determination of nitrate and nitrite on a centrifugal microfluidic device. , 2010, Talanta.

[76]  Ethan Tumarkin,et al.  Microfluidic production of biopolymer microcapsules with controlled morphology. , 2006, Journal of the American Chemical Society.

[77]  Reginald K. Lee,et al.  Highly sensitive fiber Bragg grating refractive index sensors , 2005 .

[78]  Robert Fedosejevs,et al.  Elemental analysis using micro laser-induced breakdown spectroscopy (microLIBS) in a microfluidic platform. , 2008, Optics express.

[79]  Ponnambalam Ravi Selvaganapathy,et al.  Surface micromachined PDMS microfluidic devices fabricated using a sacrificial photoresist , 2009 .

[80]  Minseok Seo,et al.  Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors. , 2005, Journal of the American Chemical Society.

[81]  F. J. Holler,et al.  Principles of Instrumental Analysis , 1973 .

[82]  S. Terry,et al.  A gas chromatographic air analyzer fabricated on a silicon wafer , 1979, IEEE Transactions on Electron Devices.

[83]  H. John Crabtree,et al.  Sample purification on a microfluidic device , 2001, Electrophoresis.

[84]  Guoqing Hu,et al.  Miniaturized immunoassay microfluidic system with electrokinetic control. , 2006, Biosensors & bioelectronics.

[85]  Benjamin R. Watts,et al.  Formation and characterization of an ideal excitation beam geometry in an optofluidic device , 2010, Biomedical optics express.

[86]  Sophia Adamia,et al.  Microfluidic chips for detecting the t(4;14) translocation and monitoring disease during treatment using reverse transcriptase-polymerase chain reaction analysis of IgH-MMSET hybrid transcripts. , 2007, The Journal of molecular diagnostics : JMD.

[87]  Xuantao Su,et al.  Light scattering characterization of single biological cells in a microfluidic cytometer , 2009, Photonics North.

[88]  C. Bliss,et al.  Rapid fabrication of a microfluidic device with integrated optical waveguides for DNA fragment analysis. , 2007, Lab on a chip.

[89]  Teodor Veres,et al.  High fidelity, high yield production of microfluidic devices by hot embossing lithography: rheology and stiction. , 2006, Lab on a chip.

[90]  Suwas Nikumb,et al.  Ultrashort pulse laser micromachined microchannels and their application in an optical switch , 2006 .

[91]  P. Lu,et al.  Femtosecond laser microfabricated fiber Mach-Zehnder interferometer for sensing applications. , 2011, Optics letters.

[92]  D. J. Harrison,et al.  Integration of immobilized trypsin bead beds for protein digestion within a microfluidic chip incorporating capillary electrophoresis separations and an electrospray mass spectrometry interface. , 2000, Rapid communications in mass spectrometry : RCM.

[93]  David Sinton,et al.  Nanoholes as nanochannels: flow-through plasmonic sensing. , 2009, Analytical chemistry.

[94]  D. J. Harrison,et al.  Label-free reading of microarray-based immunoassays with surface plasmon resonance imaging. , 2004, Analytical chemistry.

[95]  C. Bliss,et al.  Integrated wavelength-selective optical waveguides for microfluidic-based laser-induced fluorescence detection. , 2008, Lab on a chip.

[96]  Cameron D Skinner,et al.  A two bead immunoassay in a micro fluidic device using a flat laser intensity profile for illumination. , 2003, The Analyst.

[97]  Minseok Seo,et al.  Microfluidics: from dynamic lattices to periodic arrays of polymer disks. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[98]  Jana Lauzon,et al.  Microfluidic platform for single nucleotide polymorphism genotyping of the thiopurine S-methyltransferase gene to evaluate risk for adverse drug events. , 2007, The Journal of molecular diagnostics : JMD.

[99]  Minseok Seo,et al.  Microfluidic consecutive flow-focusing droplet generators. , 2007, Soft matter.

[100]  Hongying Zhu,et al.  Analysis of biomolecule detection with optofluidic ring resonator sensors. , 2007, Optics express.

[101]  D. J. Harrison,et al.  Microfluidic systems for clinical diagnostics , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[102]  Eugenia Kumacheva,et al.  A microfluidic approach to chemically driven assembly of colloidal particles at gas-liquid interfaces. , 2009, Angewandte Chemie.

[103]  Stephen Ho,et al.  Three-dimensional optical sensing network written in fused silica glass with femtosecond laser. , 2008, Optics express.

[104]  Eric D Salin,et al.  Automated liquid-solid extraction of pyrene from soil on centrifugal microfluidic devices. , 2010, Talanta.

[105]  D. Sinton,et al.  On-chip surface-based detection with nanohole arrays. , 2007, Analytical chemistry.

[106]  Marc Madou,et al.  Microfluidic device for rapid (<15 min) automated microarray hybridization. , 2005, Clinical chemistry.

[107]  Aaron R. Wheeler,et al.  Low-cost, rapid-prototyping of digital microfluidics devices , 2008 .

[108]  Andrew G. Kirk,et al.  Monolithically integrated surface plasmon resonance sensor based on focusing diffractive optic element for optofluidic platforms , 2009 .

[109]  Pun Pang Shiu,et al.  Rapid Fabrication of Micromolds for Polymeric Microfluidic Devices , 2007, 2007 Canadian Conference on Electrical and Computer Engineering.