Integer linear programming formulation of the material requirements planning problem

Lot sizing procedures for discrete and dynamic demand form a distinct class of inventory control problems, usually referred to asmaterial requirements planning. A general integer programming formulation is presented, covering an extensive range of problems: single-item, multi-item, and multi-level optimization; conditions on lot sizes and time phasing; conditions on storage and production capacities; and changes in production and storage costs per unit. The formulation serves as a uniform framework for presenting a problem and a starting point for developing and evaluating heuristic and tailor-made optimum-seeking techniques.