A review of membrane-wing aeroelasticity

Abstract Recent developments in micro-technology have been the driving force behind the scientific interest in micro air vehicles (MAVs), as these became feasible in the recent two decades. However, the unique requirements of these palm-sized air vehicles of high maneuverability in the low Reynolds number flow regime, in addition to the demand of fast adaptation to unsteady flow conditions, are practically impossible to attain with rigid wings. The massive flow separation that dominates the upper surface of rigid wings in this flow regime significantly reduces the aerodynamic efficiency of the wing in both steady and unsteady flow, thus presenting harsh limitations on the aircraft’s agility. Seeking a solution for this conundrum brought vast attention to membrane wings, inspired by the wings of bats. Membrane wings are distinguished by their ability to passively adapt to flow conditions, whether these are steady or unsteady by nature. Several review papers have addressed the static aeroelastic response of such wings, focusing on the implementation of such wings in MAVs, with additional details on the dynamic response of membrane wings. In this review paper an overview of recent developments in the understanding of membrane wing aerodynamics is presented, focusing on the dynamic aeroelasticity of membrane wings in steady flow conditions. Special focus is paid to the physical mechanisms that drive membrane oscillations and the aerodynamic benefits of such oscillations.

[1]  W. F. Ranson,et al.  Applications of digital-image-correlation techniques to experimental mechanics , 1985 .

[2]  Paola Cinnella,et al.  Quantification of model uncertainty in RANS simulations: A review , 2018, Progress in Aerospace Sciences.

[3]  Wei Shyy,et al.  Aerodynamics, sensing and control of insect-scale flapping-wing flight , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[4]  Peter J. Attar,et al.  Experimental Characterization of Aerodynamic Behavior of Membrane Wings in Low-Reynolds-Number Flow , 2012 .

[5]  S. Illingworth,et al.  Reduced-order modeling and feedback control of a flexible wing at low Reynolds numbers , 2018 .

[6]  Wei Shyy,et al.  Membrane wing aerodynamics for micro air vehicles , 2003 .

[7]  Miguel R. Visbal,et al.  High-Order-Accurate Methods for Complex Unsteady Subsonic Flows , 1999 .

[8]  Vassilios Theofilis,et al.  Modal Analysis of Fluid Flows: An Overview , 2017, 1702.01453.

[9]  Gil Iosilevskii Aerodynamics of permeable membrane wings , 2011 .

[10]  Yongsheng Lian,et al.  A COMPUTATIONAL MODEL FOR COUPLED MEMBRANE-FLUID DYNAMICS , 2002 .

[11]  W. Shyy,et al.  Computation of aerodynamic coefficients for a flexible membrane airfoil in turbulent flow: A comparison with classical theory , 1996 .

[12]  Robert A. Ormiston,et al.  Theoretical and experimental aerodynamics of the sailwing , 1971 .

[13]  Dragos Viieru,et al.  Static Aeroelastic Model Validation of Membrane Micro Air Vehicle Wings , 2007 .

[14]  J. N. Nielsen,et al.  Theory of Flexible Aerodynamic Surfaces , 1963 .

[15]  Ismet Gursul,et al.  Effect of pre-strain and excess length on unsteady fluid–structure interactions of membrane airfoils , 2009 .

[16]  Wei Shyy,et al.  Laminar-Turbulent Transition of a Low Reynolds Number Rigid or Flexible Airfoil , 2006 .

[17]  Zhijin Wang,et al.  Unsteady fluid–structure interactions of a pitching membrane wing , 2013 .

[18]  James Bluman,et al.  Chordwise wing flexibility may passively stabilize hovering insects , 2018, Journal of The Royal Society Interface.

[19]  R. Arieli,et al.  Flow over NACA-0009 and Eppler-61 airfoils at Reynolds numbers 5000 to 60,000 , 2007 .

[20]  R. Arieli,et al.  Parametric Study of a Two-dimensional Membrane Wing in Viscous Laminar Flow , 2011 .

[21]  R. Kat,et al.  On the fluid-structure interaction of flexible membrane wings for MAVs in and out of ground-effect , 2017 .

[22]  Raymond E. Gordnier,et al.  Impact of flexibility on the aerodynamics of an aspect ratio two membrane wing , 2014 .

[23]  Effects of flexibility on the aerodynamic performance of flapping wings , 2011, Journal of Fluid Mechanics.

[24]  Raymond E. Gordnier,et al.  High fidelity computational simulation of a membrane wing airfoil , 2008 .

[25]  Ryszard Sygulski,et al.  Stability of membrane in low subsonic flow , 2007 .

[26]  M. P. Païdoussis The dynamics of clusters of flexible cylinders in axial flow: Theory and experiments , 1979 .

[27]  T. J. Lardner,et al.  Deformations of elastic membranes—Effect of different constitutive relations , 1978 .

[28]  R. Palacios,et al.  Viscoelastic effects in the aeromechanics of actuated elastomeric membrane wings , 2016 .

[29]  R. K. Miller,et al.  An algorithm for finite element analysis of partly wrinkled membranes , 1982 .

[30]  F. C. Johansen,et al.  On the Flow of Air behind an Inclined Flat Plate of Infinite Span , 1927 .

[31]  M. Giles,et al.  Viscous-inviscid analysis of transonic and low Reynolds number airfoils , 1986 .

[32]  Rafael Palacios,et al.  On-Demand Aerodynamics in Integrally Actuated Membranes with Feedback Control , 2017 .

[33]  G. Spedding,et al.  On the possibility (or lack thereof) of agreement between experiment and computation of flows over wings at moderate Reynolds number , 2017, Interface Focus.

[34]  A. Hedenström,et al.  Leading-Edge Vortex Improves Lift in Slow-Flying Bats , 2008, Science.

[35]  Kenneth Breuer,et al.  Aeromechanics of Membrane Wings with Implications for Animal Flight ArnoldSong, ∗ XiaodongTian, † EmilyIsraeli, ‡ RicardoGalvao, § KristinBishop, ¶ SharonSwartz, ∗∗ , 2008 .

[36]  Ismet Gursul,et al.  Unsteady fluid–structure interactions of membrane airfoils at low Reynolds numbers , 2009 .

[37]  Gil Iosilevskii Aerodynamics of permeable membrane wings. Part 2: Seepage drag , 2013 .

[38]  D. Raveh,et al.  Membrane wing dynamic stability: The role of membrane mass , 2018 .

[39]  R Waszak Martin,et al.  Stability and Control Properties of an Aeroelastic Fixed Wing Micro Aerial Vehicle , 2001 .

[40]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[41]  Thomas J Mueller,et al.  Aerodynamic Measurements at Low Raynolds Numbers for Fixed Wing Micro-Air Vehicles , 2000 .

[42]  Wei Shyy,et al.  Flapping and flexible wings for biological and micro air vehicles , 1999 .

[43]  K. Breuer,et al.  Control of Separated Flow Using Actuated Compliant Membrane Wings , 2019, AIAA Journal.

[44]  B. G. Newman,et al.  Two-dimensional impervious sails: experimental results compared with theory , 1984, Journal of Fluid Mechanics.

[45]  Miguel R. Visbal,et al.  DEVELOPMENT OF A THREE-DIMENSIONAL VISCOUS AEROELASTIC SOLVER FOR NONLINEAR PANEL FLUTTER , 2002 .

[46]  Rafael Palacios,et al.  Leading- and trailing-edge effects on the aeromechanics of membrane aerofoils , 2013 .

[47]  T. Mueller,et al.  AERODYNAMICS OF SMALL VEHICLES , 2003 .

[48]  F. H. Abernathy Flow Over an Inclined Plate , 1962 .

[49]  N. Sandham,et al.  Fluid–structure coupling mechanism and its aerodynamic effect on membrane aerofoils , 2018, Journal of Fluid Mechanics.

[50]  D. Pines,et al.  Challenges Facing Future Micro-Air-Vehicle Development , 2006 .

[51]  H. C. Curtiss,et al.  Aerodynamic properties of a two-dimensional inextensible flexible airfoil , 1984 .

[52]  Daniella E. Raveh,et al.  Structural Optimization Using Computational Aerodynamics , 2000 .

[53]  J. Kurelek,et al.  Transition in a separation bubble under tonal and broadband acoustic excitation , 2018, Journal of Fluid Mechanics.

[54]  Philip E. Morgan,et al.  An Implicit LES Approach Based on High-order Compact Differencing and Filtering Schemes (Invited) , 2003 .

[55]  F. Menter Two-equation eddy-viscosity turbulence models for engineering applications , 1994 .

[57]  S. Illingworth,et al.  Nonlinear reduced-order modeling of the forced and autonomous aeroelastic response of a membrane wing using Harmonic Balance methods , 2019, Journal of Fluids and Structures.

[58]  Peter J. Attar Some results for approximate strain and rotation tensor formulations in geometrically non-linear Reissner Mindlin plate theory , 2008 .

[59]  M. P. Païdoussis,et al.  The stability of two-dimensional membranes in streaming flow , 1991 .

[60]  W. Peters,et al.  Digital Imaging Techniques In Experimental Stress Analysis , 1982 .

[61]  Inderjit Chopra,et al.  Basic Understanding of Airfoil Characteristics at Low Reynolds Numbers (104–105) , 2017 .

[62]  Bharathram Ganapathisubramani,et al.  Aspect-Ratio Effects on Aeromechanics of Membrane Wings at Moderate Reynolds Numbers , 2015 .

[63]  R. Palacios,et al.  Bat-inspired integrally actuated membrane wings with leading-edge sensing , 2017, Bioinspiration & biomimetics.

[64]  Z. Suo Theory of dielectric elastomers , 2010 .

[65]  Rye M. Waldman,et al.  Aerodynamic Characterization of a Wing Membrane with Variable Compliance , 2014 .

[66]  R. de Kat,et al.  Near-wake characteristics of rigid and membrane wings in ground effect , 2018, Journal of Fluids and Structures.

[67]  Danesh K. Tafti,et al.  Effect of Wing Flexibility on Lift and Thrust Production in Flapping Flight , 2010 .

[68]  Thomas J. Mueller,et al.  On the Birth of Micro Air Vehicles , 2009 .

[69]  Rye M. Waldman,et al.  Camber and aerodynamic performance of compliant membrane wings , 2017 .

[70]  Peter J. Attar,et al.  Aeroelastic Analysis of Membrane Microair Vehicles—Part I: Flutter and Limit Cycle Analysis for Fixed-Wing Configurations , 2011 .

[71]  Wei Shyy,et al.  Computational model of flexible membrane wings in steady laminar flow , 1995 .

[72]  Pavlos Vlachos,et al.  Flow Control of a Sharp-Edged Airfoil , 2001 .

[73]  Wei Shyy,et al.  Incremental Potential Flow Based Membrane Wing Element , 1997 .

[74]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[75]  Majid Molki,et al.  Oscillatory motions of a prestrained compliant membrane caused by fluid–membrane interaction , 2010 .

[76]  Ismet Gursul,et al.  Flow-induced vibrations of low aspect ratio rectangular membrane wings , 2011 .

[77]  Paul Seide,et al.  Large deflections of rectangular membranes under uniform pressure , 1977 .

[78]  Scott A. Morton,et al.  Implementation of a fully-implicit, aeroelastic Navier-Stokes solver , 1997 .

[79]  B. Thwaites,et al.  The aerodynamic theory of sails. I. Two-dimensional sails , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[80]  Diana D Chin,et al.  Flapping wing aerodynamics: from insects to vertebrates , 2016, Journal of Experimental Biology.

[81]  Jinhee Jeong,et al.  On the identification of a vortex , 1995, Journal of Fluid Mechanics.

[82]  Carlos E. S. Cesnik,et al.  Computational aerodynamics of low Reynolds number plunging, pitching and flexible wings for MAV applications , 2008 .

[83]  Kenneth S. Breuer,et al.  Evolutionary History of Bats: A bird? A plane? No, it's a bat: an introduction to the biomechanics of bat flight , 2012 .

[84]  P. Spalart Detached-Eddy Simulation , 2009 .

[85]  Hao Liu,et al.  Recent progress in flapping wing aerodynamics and aeroelasticity , 2010 .

[86]  R. Kat,et al.  Aeromechanics of membrane and rigid wings in and out of ground-effect at moderate Reynolds numbers , 2016 .

[87]  Miguel R. Visbal,et al.  High-fidelity simulations of moving and flexible airfoils at low Reynolds numbers , 2009 .

[88]  K. Breuer,et al.  Thrust, drag and wake structure in flapping compliant membrane wings , 2018, Journal of Fluid Mechanics.

[89]  D. Raveh,et al.  On the stability of two-dimensional membrane wings , 2017 .

[90]  Azuma,et al.  Aerodynamic characteristics of the wings and body of a dragonfly , 1996, The Journal of experimental biology.

[91]  Karthik Duraisamy,et al.  Modal Analysis of Fluid Flows: Applications and Outlook , 2019, AIAA Journal.

[92]  Maziar S. Hemati,et al.  Modal Analysis of Fluid Flow: Introduction to the Virtual Collection , 2020 .

[93]  Singiresu S. Rao Vibration of Continuous Systems , 2019 .

[94]  Richard Hundley,et al.  Future Technology-Driven Revolutions in Military Operations , 1994 .

[95]  R. Sandberg,et al.  Effect of the leading and trailing edge geometry on the fluid-structural coupling of membrane aerofoils , 2016 .

[96]  Lawrence Ukeiley,et al.  Passive flow control by membrane wings for aerodynamic benefit , 2013 .

[97]  Mustafa Serdar Genç,et al.  Unsteady aerodynamics and flow-induced vibrations of a low aspect ratio rectangular membrane wing with excess length , 2013 .

[98]  W. Oates,et al.  Aerodynamic control of micro air vehicle wings using electroactive membranes , 2013 .

[99]  D. Raveh,et al.  On membrane-wing stability in laminar flow , 2019, Journal of Fluids and Structures.

[100]  Ismet Gursul,et al.  Control of low Reynolds number flows by means of fluid–structure interactions , 2014 .

[101]  Rafael Palacios,et al.  Electro-aeromechanical modelling of actuated membrane wings , 2015 .

[102]  S. Alben,et al.  Large-amplitude membrane flutter in inviscid flow , 2018, Journal of Fluid Mechanics.

[103]  Wei Shyy,et al.  Fixed membrane wings for micro air vehicles: Experimental characterization, numerical modeling, and tailoring , 2008 .

[104]  Raymond E. Gordnier,et al.  Thrust augmentation of flapping airfoils in low Reynolds number flow using a flexible membrane , 2012, 1810.07686.

[105]  S. Murata,et al.  Aerodynamic characteristics of a two-dimensional porous sail , 1989, Journal of Fluid Mechanics.

[106]  Xu Sun,et al.  Nonlinear dynamic responses of a perimeter-reinforced membrane wing in laminar flows , 2017 .