Emergent Properties of Tactile Scenes Selectively Activate Barrel Cortex Neurons

Rats discriminate objects by scanning their surface with the facial vibrissae, producing spatiotemporally complex sequences of tactile contacts. The way in which the somatosensory cortex responds to these complex multivibrissal stimuli has not been explored. It is unclear yet whether contextual information from across the entire whisker pad influences cortical responses. Here, we delivered tactile stimuli to the rat vibrissae using a new 24 whisker stimulator. We tested sequences of rostrocaudal whisker deflections that generate multivibrissal motion patterns in different directions across the mystacial pad, allowing to disambiguate local from global sensory integration. Unitary electrophysiological recordings from different layers of the barrel cortex showed that a majority of neurons has direction selectivity for the multivibrissal stimulus. The selectivity resulted from nonlinear integration of responses across the mystacial pad. Our results indicate that the system extracts collective properties of a tactile scene.

[1]  H. Swadlow,et al.  Receptive-field construction in cortical inhibitory interneurons , 2002, Nature Neuroscience.

[2]  D. Contreras,et al.  Cellular mechanisms of suppressive interactions between somatosensory responses in vivo. , 2007, Journal of neurophysiology.

[3]  T. Woolsey,et al.  The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. , 1970, Brain research.

[4]  V. Bringuier,et al.  Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. , 1999, Science.

[5]  H. Lüscher,et al.  Spatiotemporal evolution of excitation and inhibition in the rat barrel cortex investigated with multielectrode arrays. , 2004, Journal of neurophysiology.

[6]  Patrick J Drew,et al.  Representation of moving wavefronts of whisker deflection in rat somatosensory cortex. , 2007, Journal of neurophysiology.

[7]  D. Simons,et al.  Thalamocortical response transformation in the rat vibrissa/barrel system. , 1989, Journal of neurophysiology.

[8]  Nicholas I. Fisher,et al.  Statistical Analysis of Circular Data , 1993 .

[9]  M A Nicolelis,et al.  Spatiotemporal properties of layer V neurons of the rat primary somatosensory cortex. , 1999, Cerebral cortex.

[10]  D. Contreras,et al.  Nonlinear Integration of Sensory Responses in the Rat Barrel Cortex: An Intracellular Study In Vivo , 2003, The Journal of Neuroscience.

[11]  E. Ahissar,et al.  Encoding of Vibrissal Active Touch , 2003, Neuron.

[12]  S. Haidarliu An anatomically adapted, injury-free headholder for Guinea pigs , 1996, Physiology & Behavior.

[13]  D J Simons,et al.  Spatial gradients and inhibitory summation in the rat whisker barrel system. , 1996, Journal of neurophysiology.

[14]  J M Gibson,et al.  Quantitative studies of stimulus coding in first-order vibrissa afferents of rats. 1. Receptive field properties and threshold distributions. , 1983, Somatosensory research.

[15]  H. Sato,et al.  Temporal Characteristics of Response Integration Evoked by Multiple Whisker Stimulations in the Barrel Cortex of Rats , 1999, The Journal of Neuroscience.

[16]  D. Heeger Modeling simple-cell direction selectivity with normalized, half-squared, linear operators. , 1993, Journal of neurophysiology.

[17]  F. Ebner,et al.  Modulation of receptive field properties of thalamic somatosensory neurons by the depth of anesthesia. , 1999, Journal of neurophysiology.

[18]  P. Sprent,et al.  Statistical Analysis of Circular Data. , 1994 .

[19]  Garrett B Stanley,et al.  The Dynamics of Spatiotemporal Response Integration in the Somatosensory Cortex of the Vibrissa System , 2006, The Journal of Neuroscience.

[20]  David J. Field,et al.  Contour integration by the human visual system: Evidence for a local “association field” , 1993, Vision Research.

[21]  J. Chapin,et al.  Mapping the body representation in the SI cortex of anesthetized and awake rats , 1984, The Journal of comparative neurology.

[22]  Miguel A. L Nicolelis,et al.  A multi-channel whisker stimulator for producing spatiotemporally complex tactile stimuli , 2001, Journal of Neuroscience Methods.

[23]  J. S. McCasland,et al.  Functional asymmetries in the rodent barrel cortex. , 1991, Somatosensory & motor research.

[24]  M. Andermann,et al.  A somatotopic map of vibrissa motion direction within a barrel column , 2006, Nature Neuroscience.

[25]  K. Svoboda,et al.  The Functional Microarchitecture of the Mouse Barrel Cortex , 2007, Neuroscience Research.

[26]  E. Ahissar,et al.  Acetylcholine-dependent induction and expression of functional plasticity in the barrel cortex of the adult rat. , 2001, Journal of neurophysiology.

[27]  Hiroyuki Kida,et al.  Similarity of direction tuning among responses to stimulation of different whiskers in neurons of rat barrel cortex. , 2005, Journal of neurophysiology.

[28]  Bert Sakmann,et al.  Sub‐ and suprathreshold receptive field properties of pyramidal neurones in layers 5A and 5B of rat somatosensory barrel cortex , 2004, The Journal of physiology.

[29]  D. Simons Temporal and spatial integration in the rat SI vibrissa cortex. , 1985, Journal of neurophysiology.

[30]  M. Laubach,et al.  Layer-Specific Somatosensory Cortical Activation During Active Tactile Discrimination , 2004, Science.

[31]  R. Frostig,et al.  Whisker-based discrimination of object orientation determined with a rapid training paradigm , 2005, Neurobiology of Learning and Memory.

[32]  Vincent Jacob,et al.  Spatiotemporal characteristics of neuronal sensory integration in the barrel cortex of the rat. , 2005, Journal of neurophysiology.

[33]  Nicholas J. Priebe,et al.  Inhibition, Spike Threshold, and Stimulus Selectivity in Primary Visual Cortex , 2008, Neuron.

[34]  S. Nelson,et al.  Spatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex. , 1998, Journal of neurophysiology.

[35]  D. Simons,et al.  Angular tuning and velocity sensitivity in different neuron classes within layer 4 of rat barrel cortex. , 2004, Journal of neurophysiology.

[36]  M. Armstrong‐James,et al.  Spatiotemporal convergence and divergence in the rat S1 “Barrel” cortex , 1987, The Journal of comparative neurology.

[37]  Randy M Bruno,et al.  Feedforward Mechanisms of Excitatory and Inhibitory Cortical Receptive Fields , 2002, The Journal of Neuroscience.

[38]  Cpj de Kock,et al.  Layer‐ and cell‐type‐specific suprathreshold stimulus representation in rat primary somatosensory cortex , 2007, The Journal of physiology.

[39]  D. Simons Response properties of vibrissa units in rat SI somatosensory neocortex. , 1978, Journal of neurophysiology.

[40]  T. Woolsey,et al.  The structural organization of layer IV in the somatosensory region (S I) of mouse cerebral cortex , 1970 .

[41]  J. M. Gibson,et al.  Quantitative studies of stimulus coding in first-order vibrissa afferents of rats. 2. Adaptation and coding of stimulus parameters. , 1983, Somatosensory research.

[42]  Vivek Khatri,et al.  Angularly nonspecific response suppression in rat barrel cortex. , 2006, Cerebral cortex.

[43]  B. Sakmann,et al.  Dynamic Receptive Fields of Reconstructed Pyramidal Cells in Layers 3 and 2 of Rat Somatosensory Barrel Cortex , 2003, The Journal of physiology.

[44]  B. Sakmann,et al.  ‐Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex , 2002, The Journal of physiology.

[45]  F. Ebner,et al.  Temporal organization of multi-whisker contact in rats. , 2001, Somatosensory & motor research.

[46]  John W. Lane,et al.  Receptive Field Properties of the Macaque Second Somatosensory Cortex: Nonlinear Mechanisms Underlying the Representation of Orientation Within a Finger Pad , 2006, The Journal of Neuroscience.

[47]  B. Connors,et al.  Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex. , 1999, Journal of neurophysiology.

[48]  M. Diamond,et al.  Integration of multiple-whisker inputs in rat somatosensory cortex. , 2001, Cerebral cortex.