The effect of trapping superparamagnetic beads on domain wall motion

Domain walls may act as localized field sources to trap and move superparamagnetic beads for manipulating biological cells and DNA. The interaction between beads of various diameters and a wall is investigated using a combination of micromagnetic and analytical models. Domain walls can transport beads under applied magnetic fields but the mutual attraction between the bead and wall causes drag forces affecting the bead to couple into the wall motion. Therefore, the interaction with the bead causes a fundamental change in the domain wall dynamics, reducing the wall mobility by five orders of magnitude.

[1]  R. Bertacco,et al.  Domain wall displacement in Py square ring for single nanometric magnetic bead detection , 2008, 0809.4649.

[2]  Robert H. Austin,et al.  Continuous microfluidic immunomagnetic cell separation , 2004 .

[3]  T. Hayward Direct imaging of domain wall interactions in Ni80Fe20 planar nanowires , 2010 .

[4]  Jaydev P Desai,et al.  Engineering approaches to biomanipulation. , 2007, Annual review of biomedical engineering.

[5]  Robert H. Austin,et al.  Microfluidic high gradient magnetic cell separation , 2006 .

[6]  D. Allwood,et al.  Dependence of Transverse Domain Wall Dynamics on Permalloy Nanowire Dimensions , 2010, IEEE Transactions on Magnetics.

[7]  Christopher S. Chen,et al.  Assembly of multicellular constructs and microarrays of cells using magnetic nanowires. , 2005, Lab on a chip.

[8]  M. Donahue,et al.  Integrated microfluidic isolation platform for magnetic particle manipulation in biological systems , 2004 .

[9]  D. Allwood,et al.  Magnetic domain wall propagation in nanowires under transverse magnetic fields , 2008 .

[10]  Gang Xiong,et al.  Magnetic domain-wall dynamics in a submicrometre ferromagnetic structure , 2003, Nature materials.

[11]  Paolo Vavassori,et al.  Magnetic nanostructures for the manipulation of individual nanoscale particles in liquid environments (invited) , 2010 .

[12]  Ondrej Hovorka,et al.  Arranging matter by magnetic nanoparticle assemblers , 2005 .

[13]  Mi-Young Im,et al.  Switchable Cell Trapping Using Superparamagnetic Beads , 2010, IEEE Magnetics Letters.

[14]  Kuangwen Hsieh,et al.  Manipulation of magnetic particles by patterned arrays of magnetic spin-valve traps , 2007 .

[15]  T. Mikolajick,et al.  Experimental study of domain wall motion in long nanostrips under the influence of a transverse field , 2008 .

[16]  R. Sooryakumar,et al.  Magnetic wire traps and programmable manipulation of biological cells. , 2009, Physical review letters.

[17]  G. Zabow,et al.  Controlled transport of magnetic particles using soft magnetic patterns , 2008 .

[18]  Q. Pankhurst,et al.  Progress in applications of magnetic nanoparticles in biomedicine , 2009 .

[19]  D Petit,et al.  Magnetic Domain-Wall Logic , 2005, Science.

[20]  R. Ivkov,et al.  Development of Tumor Targeting Bioprobes (111In-Chimeric L6 Monoclonal Antibody Nanoparticles) for Alternating Magnetic Field Cancer Therapy , 2005, Clinical Cancer Research.

[21]  C. Weijer Collective cell migration in development , 2009, Journal of Cell Science.