The Neoproterozoic “Blood Falls” in Tarim Craton and Their Possible Connection With Snowball Earth

Blood Falls refers to the outflow of iron‐rich brine plumes under the Taylor Glacier in Antarctica, which have distinctive blood‐like red color. It was proposed that during the Cryogenian, Fe oxides of terrestrial origin accumulated under glaciers via a mechanism similar to the modern Blood Falls, although reports of iron deposits of such novel origin are lacking in literature. The Quruqsay iron formation is hosted in Neoproterozoic glacial sequences in the northern margin of the Tarim Craton in NW China and consist of 15 lenticular iron orebodies. The iron ores are mainly composed of fine Fe‐oxide aggregate and clastics, with the latter sometimes occurring as dropstones indicating glacial fluvial deposition. The hematite minerals show positive Ce and Y anomalies but lack positive Eu anomalies, with flat shale‐normalized rare Earth elements patterns. The hematite minerals also display remarkably negative εNd values and close‐to‐0 δ56Fe values, which collectively indicate that iron was sourced from continents rather than mid‐ocean ridge hydrothermal vents. Additionally, δ18O values of the hematite are consistent with the large ice‐volume during the Snowball Earth event. Evidence from the Quruqsay iron deposit suggest oxidation of terrestrial sub‐glacier iron‐bearing discharge in oceans of extensive glaciation, correlating with the predicted Blood Falls‐type iron deposits in the Neoproterozoic. The Quruqsay iron formation is a unique hematite‐rich iron deposit implying that subglacial lakes can be a significant repository for Fe2+ and that the volume of the Neoproterozoic glaciers may be much higher than the current glacier.

[1]  Carly M. Onnink,et al.  Isotope Geochemistry , 2020, Geochemistry of Marine Sediments.

[2]  Tao Yang,et al.  Origin of heavy Fe isotope compositions in high-silica igneous rocks: A rhyolite perspective , 2017 .

[3]  Wen-feng Sun,et al.  New design model for high efficiency cylindrical diffractive microlenses , 2017, Scientific Reports.

[4]  Tao Yang,et al.  Updating the Geologic Barcodes for South China: Discovery of Late Archean Banded Iron Formations in the Yangtze Craton , 2017, Scientific Reports.

[5]  E. Tziperman,et al.  Snowball Earth climate dynamics and Cryogenian geology-geobiology , 2017, Science Advances.

[6]  S. Tulaczyk,et al.  An englacial hydrologic system of brine within a cold glacier: Blood Falls, McMurdo Dry Valleys, Antarctica , 2017, Journal of Glaciology.

[7]  Yongxian Li,et al.  Neoproterozoic paleogeography of the Tarim Block: An extended or alternative "missing-link" model for Rodinia? , 2017 .

[8]  Jing Huang,et al.  Major and trace element geochemistry of the Neoproterozoic syn-glacial Fulu iron formation, South China , 2016, Geological Magazine.

[9]  M. Wallace,et al.  Sub–ice shelf ironstone deposition during the Neoproterozoic Sturtian glaciation , 2016 .

[10]  A. Boyce,et al.  Multiple metal sources in the glaciomarine facies of the Neoproterozoic Jacadigo iron formation in the “Santa Cruz deposit”, Corumbá, Brazil , 2016 .

[11]  B. Kendall,et al.  Oxygenation of a Cryogenian ocean (Nanhua Basin, South China) revealed by pyrite Fe isotope compositions , 2015 .

[12]  Tiantian Wang,et al.  High‐Precision Iron Isotope Analysis of Geological Reference Materials by High‐Resolution MC‐ICP‐MS , 2015 .

[13]  T. G. Taylor The Physiography of the McMurdo Sound and Granite Harbour Region , 2015 .

[14]  Weiqiang Li,et al.  Biologically recycled continental iron is a major component in banded iron formations , 2015, Proceedings of the National Academy of Sciences.

[15]  D. L. Heron The significance of ice-rafted debris in Sturtian glacial successions , 2015 .

[16]  H. Dugan,et al.  Deep groundwater and potential subsurface habitats beneath an Antarctic dry valley , 2015, Nature Communications.

[17]  K. Lambeck,et al.  Sea level and global ice volumes from the Last Glacial Maximum to the Holocene , 2014, Proceedings of the National Academy of Sciences.

[18]  D. Angus P. Moczo, J. Kristek & M. Galis 2014. The Finite-Difference Modelling of Earthquake Motions: Waves and Ruptures. Cambridge University Press. , 2014, Geological Magazine.

[19]  M. Santosh,et al.  Geochronology and geochemistry of Early Mesoproterozoic meta-diabase sills from Quruqtagh in the northeastern Tarim Craton: Implications for breakup of the Columbia supercontinent , 2014 .

[20]  E. Bellefroid,et al.  Neoproterozoic iron formation: An evaluation of its temporal, environmental and tectonic significance , 2013 .

[21]  P. Johnson,et al.  ~750Ma banded iron formation from the Arabian-Nubian Shield-Implications for understanding neoproterozoic tectonics, volcanism, and climate change , 2013 .

[22]  Busfield,et al.  Glacitectonic deformation in the Chuos Formation of northern Namibia: implications for Neoproterozoic ice dynamics , 2013 .

[23]  Chuanming Zhou,et al.  Oxygen isotope composition of meltwater from a Neoproterozoic glaciation in South China , 2013 .

[24]  A. Anbar,et al.  Ocean oxygenation in the wake of the Marinoan glaciation , 2012, Nature.

[25]  M. Santosh,et al.  Precambrian evolution and cratonization of the Tarim Block, NW China: Petrology, geochemistry, Nd-isotopes and U–Pb zircon geochronology from Archaean gabbro-TTG–potassic granite suite and Paleoproterozoic metamorphic belt , 2012 .

[26]  B. Kamber,et al.  A new depositional model for glaciogenic Neoproterozoic iron formation: insights from the chemostratigraphy and basin configuration of the Rapitan iron formation1Northwest Territories Geoscience Office Contribution 0052 , 2012 .

[27]  F. Poitrasson,et al.  Fe isotope and trace element geochemistry of the Neoproterozoic syn-glacial Rapitan iron formation , 2011 .

[28]  N. Dauphas,et al.  Iron Isotopic Compositions of Geological Reference Materials and Chondrites , 2011 .

[29]  A. Bekker,et al.  Rare Earth Element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition , 2010 .

[30]  R. Handler,et al.  Iron isotope fractionation between aqueous ferrous iron and goethite , 2010 .

[31]  Noah J. Planavsky,et al.  Iron Formation: The Sedimentary Product of a Complex Interplay among Mantle, Tectonic, Oceanic, and Biospheric Processes , 2010 .

[32]  Yan-Yan Zhao,et al.  Stable isotope evidence for involvement of deglacial meltwater in Ediacaran carbonates in South China , 2010 .

[33]  N. Oliver,et al.  Oxygen Isotope Compositions of Iron Oxides from High-Grade BIF-Hosted Iron Ore Deposits of the Central Hamersley Province, Western Australia: Constraints on the Evolution of Hydrothermal Fluids , 2009 .

[34]  D. Canfield,et al.  Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes , 2009, Nature.

[35]  P. Hoffman,et al.  A palaeogeographic context for Neoproterozoic glaciation , 2009 .

[36]  E. Norin TERTIARY OF THE TARIM BASIN , 2009 .

[37]  A. Anbar,et al.  A Contemporary Microbially Maintained Subglacial Ferrous "Ocean" , 2009, Science.

[38]  Dunyi Liu,et al.  SHRIMP zircon U-Pb age constraints on Neoproterozoic Quruqtagh diamictites in NW China , 2009 .

[39]  M. Leybourne,et al.  Rare earth elements (REE) and yttrium in stream waters, stream sediments, and Fe–Mn oxyhydroxides: Fractionation, speciation, and controls over REE + Y patterns in the surface environment , 2008 .

[40]  B. Beard,et al.  The role of volatile exsolution and sub-solidus fluid/rock interactions in producing high 56Fe/54Fe ratios in siliceous igneous rocks , 2008 .

[41]  A. Bekker,et al.  Tracing the stepwise oxygenation of the Proterozoic ocean , 2008, Nature.

[42]  T. N. Clifford The geology of the Neoproterozoic Swakop-Otavi transition zone in the Outjo District, northern Damara Orogen, Namibia , 2008 .

[43]  H. Ohmoto,et al.  Oxygen Isotope Study of Paleoproterozoic Banded Iron Formation, Hamersley Basin, Western Australia , 2008 .

[44]  Chuan-Lin Zhang,et al.  Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments , 2008 .

[45]  Ariel D. Anbar,et al.  Metal Stable Isotopes in Paleoceanography , 2007 .

[46]  J. Priscu,et al.  Bacterial Diversity Associated with Blood Falls, a Subglacial Outflow from the Taylor Glacier, Antarctica , 2007, Applied and Environmental Microbiology.

[47]  Ian Joughin,et al.  Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams , 2007, Nature.

[48]  J. Grotzinger,et al.  Oxidation of the Ediacaran Ocean , 2006, Nature.

[49]  Jasmine B. D. Jaffrés,et al.  Paleoclimates, ocean depth, and the oxygen isotopic composition of seawater , 2006 .

[50]  E. Boyle,et al.  Iron isotopes in the Amazon River system: Weathering and transport signatures , 2006 .

[51]  O. Rouxel,et al.  Mass spectrometry and natural variations of iron isotopes. , 2006, Mass spectrometry reviews.

[52]  B. Kamber,et al.  The behaviour of the rare earth elements during estuarine mixing-revisited , 2006 .

[53]  B. Öhlander,et al.  Iron isotope fractionation in river colloidal matter , 2006 .

[54]  Duncan J. Wingham,et al.  Rapid discharge connects Antarctic subglacial lakes , 2006, Nature.

[55]  P. Hoffman 28th DeBeers Alex. Du Toit Memorial Lecture, 2004. On Cryogenian (Neoproterozoic) ice-sheet dynamics and the limitations of the glacial sedimentary record , 2005 .

[56]  D. Catling,et al.  How Earth's atmosphere evolved to an oxic state: A status report , 2005 .

[57]  D. Canfield THE EARLY HISTORY OF ATMOSPHERIC OXYGEN: Homage to Robert M. Garrels , 2005 .

[58]  E. A. Ladeira,et al.  GEOCHEMISTRY AND MINERALOGY OF NEOPROTEROZOIC BANDED IRON-FORMATIONS AND SOME SELECTED, SILICEOUS MANGANESE FORMATIONS FROM THE URUCUM DISTRICT, MATO GROSSO DO SUL, BRAZIL , 2004 .

[59]  J. Priscu,et al.  Geomicrobiology of Blood Falls: An Iron-Rich Saline Discharge at the Terminus of the Taylor Glacier, Antarctica , 2004 .

[60]  Kenneth C. Jezek,et al.  Evidence for subglacial water transport in the West Antarctic Ice Sheet through three‐dimensional satellite radar interferometry , 2004 .

[61]  D. Newman,et al.  Iron isotope fractionation by Fe(II)-oxidizing photoautotrophic bacteria , 2004 .

[62]  D. DePaolo,et al.  Iron isotopic fractionation during continental weathering , 2003 .

[63]  Henry J Sun,et al.  Application of Fe isotopes to tracing the geochemical and biological cycling of Fe , 2003 .

[64]  N. Beukes,et al.  Ancient geochemical cycling in the Earth as inferred from Fe isotope studies of banded iron formations from the Transvaal Craton , 2003 .

[65]  Ulrich Weser,et al.  Mass fractionation processes of transition metal isotopes , 2002 .

[66]  D. Müller Gold-copper mineralization in alkaline rocks , 2002 .

[67]  C. W. Childs,et al.  Demonstration of significant abiotic iron isotope fractionation in nature , 2001 .

[68]  K. Lambeck,et al.  Sea Level Change Through the Last Glacial Cycle , 2001, Science.

[69]  Kazuya Takahashi,et al.  JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium , 2000 .

[70]  B. Lottermoser,et al.  Geochemistry, petrology and origin of Neoproterozoic ironstones in the eastern part of the Adelaide Geosyncline, South Australia , 2000 .

[71]  P. Koch,et al.  Paleocene–Eocene climatic variation in western North America: Evidence from the δ18O of pedogenic hematite , 1999 .

[72]  Shaun K. Frape,et al.  History of McMurdo Dry Valley lakes, Antarctica, from stable chlorine isotope data , 1999 .

[73]  J. Charlou,et al.  Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems , 1999 .

[74]  P. Koch,et al.  Oxygen isotope fractionation in ferric oxide-water systems: low temperature synthesis , 1999 .

[75]  P. Dulski,et al.  Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater , 1999 .

[76]  Y. Nozaki,et al.  Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation , 1999 .

[77]  Halverson,et al.  A neoproterozoic snowball earth , 1998, Science.

[78]  P. Möller,et al.  Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox-cycling , 1997 .

[79]  Donald E. Canfield,et al.  Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies , 1996, Nature.

[80]  P. Dulski,et al.  Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa , 1996 .

[81]  F. Millero,et al.  Vertical distributions and speciation of dissolved rare earth elements in the anoxic brines of Bannock Basin, eastern Mediterranean Sea , 1995 .

[82]  K. Condie,et al.  Evolution of the Kaapvaal Craton as viewed from geochemical and SmNd isotopic analyses of intracratonic pelites , 1995 .

[83]  S. Taylor,et al.  The geochemical evolution of the continental crust , 1995 .

[84]  J. Edmond,et al.  Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges , 1994 .

[85]  N. Beukes,et al.  Sedimentology and geochemistry of the glaciogenic late Proterozoic Rapitan Iron-Formation in Canada , 1993 .

[86]  Joseph L. Kirschvink,et al.  Late Proterozoic low-latitude global glaciation: the snowball Earth , 1992 .

[87]  C. Yapp Oxygen isotopes in an oolitic ironstone and the determination of goethite δ18O values by selective dissolution of impurities: The 5M NaOH method , 1991 .

[88]  D. Lovley Dissimilatory Fe(III) and Mn(IV) reduction , 1991, Microbiological reviews.

[89]  A. Camerlenghi ANOXIC BASINS OF THE EASTERN MEDITERRANEAN : GEOLOGICAL FRAMEWORK , 1990 .

[90]  S. Jacobsen,et al.  The chemical evolution of Precambrian seawater: Evidence from REEs in banded iron formations , 1990 .

[91]  Ki‐Hyun Kim,et al.  Rare earth element scavenging in seawater , 1990 .

[92]  S. Jacobsen,et al.  Nd isotopic variations in Precambrian banded iron formations , 1988 .

[93]  N. Shackleton,et al.  Oxygen isotopes and sea level , 1986, Nature.

[94]  R. K. O’nions,et al.  Source of Precambrian chemical and clastic sediments , 1985, Nature.

[95]  G. Klaver,et al.  Discovery of an anoxic basin within the Strabo Trench, eastern Mediterranean , 1983, Nature.

[96]  G. Wasserburg,et al.  Sm-Nd isotopic evolution of chondrites , 1980 .

[97]  K. Marti,et al.  Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle , 1978 .

[98]  R. H. Becker,et al.  Oxygen isotope study of a Precambrian banded iron-formation, Hamersley Range, Western Australia , 1976 .

[99]  M. Jackson,et al.  Saline Discharge from Taylor Glacier, Victoria Land, Antarctica , 1965, The Journal of Geology.

[100]  K. Armitage,et al.  PHYSICOCHEMICAL LIMNOLOGY OF LAKE BONNEY, ANTARCTICA , 1964 .

[101]  R. Clayton,et al.  The Use of Oxygen Isotopes in High-Temperature Geological Thermometry , 1961, The Journal of Geology.

[102]  G. Cox,et al.  A model for Cryogenian iron formation , 2016 .

[103]  G. Shields-Zhou,et al.  The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling , 2012 .

[104]  F. Macdonald,et al.  Chapter 5 Chemical sediments associated with Neoproterozoic glaciation: iron formation, cap carbonate, barite and phosphorite , 2011 .

[105]  Y. Bin Fe Isotopic Characteristics of the Neoproterozoic BIF in Guangxi Province and its Implications , 2010 .

[106]  Zhang Wei A new evidence from zircon SHRIMP U-Pb dating of the Neoproterozoic diamictite in Quruqtagh area,Tarim basin,Xinjiang,China , 2010 .

[107]  Helen Amanda Fricker,et al.  Connected subglacial lake activity on lower Mercer and Whillans Ice Streams, West Antarctica, 2003–2008 , 2009, Journal of Glaciology.

[108]  E. Roden,et al.  Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis , 2008 .

[109]  E. Rohling PALEOCEANOGRAPHY, PHYSICAL AND CHEMICAL PROXIES | Oxygen Isotopic Composition of Seawater , 2007 .

[110]  E. Rohling Oxygen isotope composition of seawater , 2007 .

[111]  Z. Sharp,et al.  Oxygen isotope composition of hematite and genesis of high-grade BIF-hosted iron ores , 2006 .

[112]  B. Kamber,et al.  Rare Earth Element and Yttrium Variability in South East Queensland Waterways , 2006 .

[113]  P. Hoffman On Cryogenian ( Neoproterozoic ) icesheet dynamics and the limitations of the glacial sedimentary record , 2005 .

[114]  Chen Ke-qiang The Nanhua System of Xinjiang and some Geological Issues of Nanhua System in China , 2003 .

[115]  Zhang Zhi U-Pb geochronological evidence for the early Precambrian complex of the Tarim Craton, NW China. , 2003 .

[116]  S. Jacobsen,et al.  A Nd isotopic study of the Hamersley and Michipicoten banded iron formations: the source of REE and Fe in Archean oceans , 1988 .

[117]  N. Shackleton Oxygen isotopes, ice volume and sea level , 1987 .

[118]  S. Taylor,et al.  The continental crust: Its composition and evolution , 1985 .

[119]  G. Gross Tectonic Systems and the Deposition of Iron-Formation , 1983 .

[120]  R. Clayton,et al.  The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis , 1963 .

[121]  D. Schrag,et al.  O of the Glacial Deep Ocean , 2022 .