Multiscale Exploration of Mouse Brain Microstructures Using the Knife-Edge Scanning Microscope Brain Atlas

Connectomics is the study of the full connection matrix of the brain. Recent advances in high-throughput, high-resolution 3D microscopy methods have enabled the imaging of whole small animal brains at a sub-micrometer resolution, potentially opening the road to full-blown connectomics research. One of the first such instruments to achieve whole-brain-scale imaging at sub-micrometer resolution is the Knife-Edge Scanning Microscope (KESM). KESM whole-brain data sets now include Golgi (neuronal circuits), Nissl (soma distribution), and India ink (vascular networks). KESM data can contribute greatly to connectomics research, since they fill the gap between lower resolution, large volume imaging methods (such as diffusion MRI) and higher resolution, small volume methods (e.g., serial sectioning electron microscopy). Furthermore, KESM data are by their nature multiscale, ranging from the subcellular to the whole organ scale. Due to this, visualization alone is a huge challenge, before we even start worrying about quantitative connectivity analysis. To solve this issue, we developed a web-based neuroinformatics framework for efficient visualization and analysis of the multiscale KESM data sets. In this paper, we will first provide an overview of KESM, then discuss in detail the KESM data sets and the web-based neuroinformatics framework, which is called the KESM brain atlas (KESMBA). Finally, we will discuss the relevance of the KESMBA to connectomics research, and identify challenges and future directions.

[1]  G. Allan Johnson,et al.  Digital Atlasing and Standardization in the Mouse Brain , 2011, PLoS Comput. Biol..

[2]  F. Dudek,et al.  Pseudorabies virus expressing enhanced green fluorescent protein: A tool for in vitro electrophysiological analysis of transsynaptically labeled neurons in identified central nervous system circuits. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[3]  J C Fiala,et al.  Reconstruct: a free editor for serial section microscopy , 2005, Journal of microscopy.

[4]  W. Denk,et al.  Serial Block-Face Scanning Electron Microscopy to Reconstruct Three-Dimensional Tissue Nanostructure , 2004, PLoS biology.

[5]  Matthew E. Phillips,et al.  Lateral Connectivity in the Olfactory Bulb is Sparse and Segregated , 2011, Front. Neural Circuits..

[6]  Bemjamin P. Stem All-optical histology , 2003 .

[7]  C. Sotelo,et al.  Ultrastructural analysis of catecholaminergic innervation in weaver and normal mouse cerebellar cortices , 2000, The Journal of comparative neurology.

[8]  Barbara S. Chaparro,et al.  The world wide wait: effects of delays on user performance , 2000 .

[9]  Andreas Thiel,et al.  Complex dynamics is abolished in delayed recurrent systems with distributed feedback times , 2003, Complex..

[10]  J. Livet,et al.  A technicolour approach to the connectome , 2008, Nature Reviews Neuroscience.

[11]  H. Markram,et al.  Correlation maps allow neuronal electrical properties to be predicted from single-cell gene expression profiles in rat neocortex. , 2004, Cerebral cortex.

[12]  Dennis F. Galletta,et al.  Web Site Delays: How Tolerant are Users? , 2004, J. Assoc. Inf. Syst..

[13]  Thomas K. Berger,et al.  Evaluating automated parameter constraining procedures of neuron models by experimental and surrogate data , 2008, Biological Cybernetics.

[14]  Olaf Sporns,et al.  Graph Theory Methods for the Analysis of Neural Connectivity Patterns , 2003 .

[15]  R. Angus Silver,et al.  neuroConstruct: A Tool for Modeling Networks of Neurons in 3D Space , 2007, Neuron.

[16]  William M. Wells,et al.  Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation , 2004, IEEE Transactions on Medical Imaging.

[17]  L. Swanson Brain Architecture: Understanding the Basic Plan , 2002 .

[18]  G. Ascoli,et al.  NeuroMorpho.Org: A Central Resource for Neuronal Morphologies , 2007, The Journal of Neuroscience.

[19]  P. Thiran,et al.  Mapping Human Whole-Brain Structural Networks with Diffusion MRI , 2007, PloS one.

[20]  James M. Bower,et al.  A Comparative Survey of Automated Parameter-Search Methods for Compartmental Neural Models , 1999, Journal of Computational Neuroscience.

[21]  Jeffrey L. Krichmar,et al.  L-neuron: A modeling tool for the efficient generation and parsimonious description of dendritic morphology , 2000, Neurocomputing.

[22]  H. Sebastian Seung,et al.  Boundary Learning by Optimization with Topological Constraints , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[23]  Carol M. Petito The Synaptic Organization of the Brain, 4th Ed , 1998 .

[24]  Yuan Liu,et al.  The DIADEM and Beyond , 2011, Neuroinformatics.

[25]  Kristen M. Harris,et al.  Synthesis of Research: Extending Unbiased Stereology of Brain Ultrastructure to Three-dimensional Volumes , 2001, J. Am. Medical Informatics Assoc..

[26]  Giorgio A. Ascoli,et al.  A cross-platform freeware tool for digital reconstruction of neuronal arborizations from image stacks , 2007, Neuroinformatics.

[27]  Hong Shen,et al.  Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms , 1999, IEEE Transactions on Information Technology in Biomedicine.

[28]  Yoonsuck Choe,et al.  Knife-Edge Scanning Microscopy: High-throughput Imaging and Analysis of Massive Volumes of Biological Microstructures , 2008 .

[29]  R. W. Draft,et al.  Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system , 2007, Nature.

[30]  G. Shepherd The Synaptic Organization of the Brain , 1979 .

[31]  D Mayerich,et al.  Knife‐edge scanning microscopy for imaging and reconstruction of three‐dimensional anatomical structures of the mouse brain , 2008, Journal of microscopy.

[32]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[33]  Nikolaus F. Troje,et al.  Enhancing Depth Perception in Translucent Volumes , 2006, IEEE Transactions on Visualization and Computer Graphics.

[34]  D. Long Networks of the Brain , 2011 .

[35]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[36]  Klaas E. Stephan,et al.  Network participation indices: characterizing component roles for information processing in neural networks , 2003, Neural Networks.

[37]  Slawomir Nasuto Three-Dimensional Reconstruction of Neurons with Neuromantic , 2007 .

[38]  Khalid A. Al-Kofahi,et al.  Rapid automated three-dimensional tracing of neurons from confocal image stacks , 2002, IEEE Transactions on Information Technology in Biomedicine.

[39]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[40]  Luis von Ahn Games with a Purpose , 2006, Computer.

[41]  H. Markram The Blue Brain Project , 2006, Nature Reviews Neuroscience.

[42]  Yoonsuck Choe,et al.  Fast and accurate retinal vasculature tracing and kernel-Isomap-based feature selection , 2009, 2009 International Joint Conference on Neural Networks.

[43]  David Mayerich,et al.  Metrics for comparing explicit representations of interconnected biological networks , 2011, 2011 IEEE Symposium on Biological Data Visualization (BioVis)..

[44]  V. Wedeen,et al.  Diffusion MRI of Complex Neural Architecture , 2003, Neuron.

[45]  Jeffrey L. Krichmar,et al.  Computer generation and quantitative morphometric analysis of virtual neurons , 2001, Anatomy and Embryology.

[46]  D. M Ay Erich,et al.  Knife-edge scanning microscopy for imaging and reconstruction of three-dimensional anatomical structures of the mouse brain , 2008 .

[47]  Srinivas C. Turaga,et al.  Machines that learn to segment images: a crucial technology for connectomics , 2010, Current Opinion in Neurobiology.

[48]  Gabriel Wittum,et al.  NeuGen: A tool for the generation of realistic morphology of cortical neurons and neural networks in 3D , 2006, Neurocomputing.

[49]  E M Glaser,et al.  Neuron imaging with Neurolucida--a PC-based system for image combining microscopy. , 1990, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[50]  Giorgio A. Ascoli,et al.  Reconstruction of Brain Networks by Algorithmic Amplification of Morphometry Data , 1999, IWANN.

[51]  Henry Markram,et al.  Deriving physical connectivity from neuronal morphology , 2003, Biological Cybernetics.

[52]  G. Allan Johnson,et al.  Waxholm Space: An image-based reference for coordinating mouse brain research , 2010, NeuroImage.

[53]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[54]  Manuel Blum,et al.  reCAPTCHA: Human-Based Character Recognition via Web Security Measures , 2008, Science.

[55]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[56]  Shawn Mikula,et al.  Internet-enabled high-resolution brain mapping and virtual microscopy , 2007, NeuroImage.

[57]  J. Keyser,et al.  Constructing High-Resolution Microvascular Models , 2008 .

[58]  Bruce H. McCormick,et al.  NOISE AND ARTIFACT REMOVAL IN KNIFE-EDGE SCANNING MICROSCOPY , 2007, 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[59]  Yoonsuck Choe,et al.  Fast macro-scale transmission imaging of microvascular networks using KESM , 2011, Biomedical optics express.

[60]  Claus Lewerentz,et al.  A comparative survey. , 1963 .

[61]  Arthur W. Toga,et al.  The informatics of a C57BL/6J mouse brain atlas , 2007, Neuroinformatics.

[62]  Yoonsuck Choe,et al.  A local maximum intensity projection tracing of vasculature in Knife-Edge Scanning Microscope volume data , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[63]  Olaf Sporns,et al.  Classes of network connectivity and dynamics , 2001, Complex..

[64]  D. Kleinfeld,et al.  All-Optical Histology Using Ultrashort Laser Pulses , 2003, Neuron.

[65]  James M. Bower,et al.  The Book of GENESIS , 1994, Springer New York.

[66]  Yoonsuck Choe,et al.  Automated lateral sectioning for Knife-Edge Scanning Microscopy , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[67]  Bertram Ludäscher,et al.  A cell-centered database for electron tomographic data. , 2002, Journal of structural biology.

[68]  Jaap van Pelt and Harry B.M. Uylings Natural Variability in the Geometry of Dendritic Branching Patterns , 2005 .

[69]  Manuel Blum,et al.  Peekaboom: a game for locating objects in images , 2006, CHI.

[70]  R. C Cannon,et al.  An on-line archive of reconstructed hippocampal neurons , 1998, Journal of Neuroscience Methods.

[71]  Florence Rand Diamond,et al.  A comparative survey. , 1963 .

[72]  Daniel Chern-Yeow Eng,et al.  Stereo Pseudo 3D Rendering for Web-based Display of Scientific Volumetric Data , 2008, VG/PBG@SIGGRAPH.

[73]  Stephen J. Smith,et al.  Array Tomography: A New Tool for Imaging the Molecular Architecture and Ultrastructure of Neural Circuits , 2007, Neuron.

[74]  G. Ascoli Computational Neuroanatomy , 2002, Humana Press.

[75]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[76]  Rainer Goebel,et al.  High-resolution diffusion tensor imaging and tractography of the human optic chiasm at 9.4 T , 2008, NeuroImage.

[77]  Gordon M Shepherd,et al.  Viral tracing identifies distributed columnar organization in the olfactory bulb , 2006, Proceedings of the National Academy of Sciences.

[78]  Randal A. Koene,et al.  NETMORPH: A Framework for the Stochastic Generation of Large Scale Neuronal Networks With Realistic Neuron Morphologies , 2009, Neuroinformatics.

[79]  Yoonsuck Choe,et al.  Cell tracking and segmentation in electron microscopy images using graph cuts , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.