Known algorithms on graphs of bounded treewidth are probably optimal

We obtain a number of lower bounds on the running time of algorithms solving problems on graphs of bounded treewidth. We prove the results under the Strong Exponential Time Hypothesis of Impagliazzo and Paturi. In particular, assuming that SAT cannot be solved in (2 - ∈)<sup><i>n</i></sup><i>m</i><sup><i>O</i>(1)</sup> time, we show that for any ∈ > 0; • Independent Set cannot be solved in time (2 − ε)<sup>tw(<i>G</i>)</sup> |<i>V</i>(<i>G</i>)|<sup><i>O</i>(1)</sup>, • Dominating Set cannot be solved in time (3 − ε)<sup>tw(<i>G</i>)</sup> |<i>V</i>(<i>G</i>)|<sup><i>O</i>(1)</sup>, • Max Cut cannot be solved in time (2 − ε)<sup>tw(<i>G</i>)</sup> |<i>V</i>(<i>G</i>)|<sup><i>O</i>(1)</sup>, • Odd Cycle Transversal cannot be solved in time (3 − ε)<sup>tw(<i>G</i>)</sup> |<i>V</i>(<i>G</i>)|<sup><i>O</i>(1)</sup>, • For any <i>q</i> ≥ 3, <i>q</i>-Coloring cannot be solved in time (<i>q</i> − ε)<sup>tw(<i>G</i>)</sup> |<i>V</i>(<i>G</i>)|<sup><i>O</i>(1)</sup>, • Partition Into Triangles cannot be solved in time (2 − ε)<sup>tw(<i>G</i>)</sup> |<i>V</i>(<i>G</i>)|<sup><i>O</i>(1)</sup>. Our lower bounds match the running times for the best known algorithms for the problems, up to the ε in the base.

[1]  Dániel Marx,et al.  Can you beat treewidth? , 2010, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[2]  Stefan Kratsch,et al.  Fast Hamiltonicity Checking Via Bases of Perfect Matchings , 2012, J. ACM.

[3]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[4]  Michal Pilipczuk,et al.  Solving Connectivity Problems Parameterized by Treewidth in Single Exponential Time , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[5]  Atsushi Takahashi,et al.  Mixed Searching and Proper-Path-Width , 1991, Theor. Comput. Sci..

[6]  Stefan Richter,et al.  Enumerate and Expand: Improved Algorithms for Connected Vertex Cover and Tree Cover , 2006, Theory of Computing Systems.

[7]  Russell Impagliazzo,et al.  The Complexity of Satisfiability of Small Depth Circuits , 2009, IWPEC.

[8]  Ryan Williams,et al.  Finding paths of length k in O*(2k) time , 2008, Inf. Process. Lett..

[9]  Saket Saurabh,et al.  Simpler Parameterized Algorithm for OCT , 2009, IWOCA.

[10]  Thomas C. van Dijk,et al.  Inclusion/Exclusion Meets Measure and Conquer , 2013, Algorithmica.

[11]  Bruce A. Reed,et al.  Finding odd cycle transversals , 2004, Oper. Res. Lett..

[12]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[13]  Thomas C. van Dijk,et al.  Inclusion/Exclusion Meets Measure and Conquer , 2009, ESA.

[14]  Jan Arne Telle,et al.  Practical Algorithms on Partial k-Trees with an Application to Domination-like Problems , 1993, WADS.

[15]  Erik D. Demaine,et al.  Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs , 2005, JACM.

[16]  Yoshio Okamoto,et al.  On Problems as Hard as CNFSAT , 2011, ArXiv.

[17]  Rolf Niedermeier,et al.  INTRODUCTION TO FIXED-PARAMETER ALGORITHMS , 2006 .

[18]  Peter Rossmanith,et al.  Dynamic Programming on Tree Decompositions Using Generalised Fast Subset Convolution , 2009, ESA.

[19]  Andreas Björklund,et al.  Fourier meets möbius: fast subset convolution , 2006, STOC '07.

[20]  Mihai Patrascu,et al.  On the possibility of faster SAT algorithms , 2010, SODA '10.

[21]  Russell Impagliazzo,et al.  Complexity of k-SAT , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[22]  Mohammad Taghi Hajiaghayi,et al.  Approximation Schemes for Steiner Forest on Planar Graphs and Graphs of Bounded Treewidth , 2009, JACM.

[23]  Ge Xia,et al.  Strong computational lower bounds via parameterized complexity , 2006, J. Comput. Syst. Sci..

[24]  Fedor V. Fomin,et al.  On Two Techniques of Combining Branching and Treewidth , 2009, Algorithmica.

[25]  David Eppstein Diameter and Treewidth in Minor-Closed Graph Families , 2000, Algorithmica.

[26]  Éva Tardos,et al.  Algorithm design , 2005 .

[27]  Bruce A. Reed,et al.  Planar graph bipartization in linear time , 2005, Discret. Appl. Math..

[28]  D DemaineErik,et al.  Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs , 2005 .

[29]  Petr A. Golovach,et al.  Algorithmic lower bounds for problems parameterized by clique-width , 2010, SODA '10.

[30]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[31]  Liam Roditty,et al.  Fast approximation algorithms for the diameter and radius of sparse graphs , 2013, STOC '13.

[32]  Ge Xia,et al.  On the computational hardness based on linear FPT-reductions , 2006, J. Comb. Optim..

[33]  Stefan Kratsch,et al.  Deterministic Single Exponential Time Algorithms for Connectivity Problems Parameterized by Treewidth , 2013, ICALP.

[34]  Dimitrios M. Thilikos,et al.  Invitation to fixed-parameter algorithms , 2007, Comput. Sci. Rev..

[35]  Rolf Niedermeier,et al.  Improved Tree Decomposition Based Algorithms for Domination-like Problems , 2002, LATIN.

[36]  Erik D. Demaine,et al.  The Bidimensionality Theory and Its Algorithmic Applications , 2008, Comput. J..

[37]  Dániel Marx,et al.  On the Optimality of Planar and Geometric Approximation Schemes , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[38]  Alex D. Scott,et al.  Linear-programming design and analysis of fast algorithms for Max 2-CSP , 2006, Discret. Optim..

[39]  Maria J. Serna,et al.  Cutwidth I: A linear time fixed parameter algorithm , 2005, J. Algorithms.