Humanoid teleoperation for whole body manipulation

We present results of successful telemanipulation of large, heavy objects by a humanoid robot. Using a single joystick the operator controls walking and whole body manipulation along arbitrary paths for up to ten minutes of continuous execution. The robot grasps, walks, pushes, pulls, turns and re-grasps a 55 kg range of loads on casters. Our telemanipulation framework changes reference frames online to let the operator steer the robot in free walking, its hands in grasping and the object during mobile manipulation. In the case of manipulation, our system computes a robot motion that satisfies the commanded object path as well as the kinematic and dynamic constraints of the robot. Furthermore, we achieve increased robot stability by learning dynamic friction models of manipulated objects.

[1]  Carlos Canudas de Wit,et al.  Adaptive Friction Compensation in Robot Manipulators: Low Velocities , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[2]  Andrew W. Moore,et al.  Locally Weighted Learning for Control , 1997, Artificial Intelligence Review.

[3]  Daniel E. Whitney,et al.  Resolved Motion Rate Control of Manipulators and Human Prostheses , 1969 .

[4]  Andrew W. Moore,et al.  Locally Weighted Learning , 1997, Artificial Intelligence Review.

[5]  Mike Stilman,et al.  Navigation among movable obstacles , 2007 .

[6]  Kazuhito Yokoi,et al.  Whole body teleoperation of a humanoid robot integrating operator's intention and robot's autonomy: an experimental verification , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[7]  Kazuhito Yokoi,et al.  A tele-operated humanoid robot drives a backhoe , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[8]  J. Edward Colgate,et al.  Robust impedance shaping telemanipulation , 1993, IEEE Trans. Robotics Autom..

[9]  John Kenneth Salisbury,et al.  The Intuitive/sup TM/ telesurgery system: overview and application , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[10]  Masayuki Inaba,et al.  Online generation of humanoid walking motion based on a fast generation method of motion pattern that follows desired ZMP , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  Carlos Canudas de Wit,et al.  Friction Models and Friction Compensation , 1998, Eur. J. Control.

[12]  Steven E. Butner,et al.  Transforming a surgical robot for human telesurgery , 2003, IEEE Trans. Robotics Autom..

[13]  Jean-Jacques E. Slotine,et al.  Telemanipulation with Time Delays , 2004, Int. J. Robotics Res..

[14]  Fredrik Rehnmark,et al.  Robonaut: NASA's Space Humanoid , 2000, IEEE Intell. Syst..

[15]  Tatsuo Arai,et al.  Mobile manipulation of humanoids-real-time control based on manipulability and stability , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[16]  Canudas de WitC.,et al.  Adaptive friction compensation in robot manipulators , 1991 .

[17]  Masayuki Inaba,et al.  Hand-centered whole-body motion control for a humanoid robot , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[18]  Satoshi Kagami,et al.  An intelligent joystick for biped control , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[19]  Shuuji Kajita,et al.  Pushing manipulation by humanoid considering two-kinds of ZMPs , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[20]  Norman I. Badler,et al.  Real-Time Inverse Kinematics Techniques for Anthropomorphic Limbs , 2000, Graph. Model..

[21]  Kazuhito Yokoi,et al.  Biped walking pattern generation by using preview control of zero-moment point , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[22]  Tatsuo Arai,et al.  Pushing an Object Considering the Hand Reflect Forces by Humanoid Robot in Dynamic Walking , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[23]  Kazuhiro Kosuge,et al.  Human-machine cooperative telemanipulation with motion and force scaling using task-oriented virtual tool dynamics , 2000, IEEE Trans. Robotics Autom..

[24]  T. Katayama,et al.  Design of an optimal controller for a discrete-time system subject to previewable demand , 1985 .

[25]  Satoshi Kagami,et al.  Learning object models for whole body manipulation , 2007, 2007 7th IEEE-RAS International Conference on Humanoid Robots.

[26]  Satoshi Kagami,et al.  Motion Control System that Realizes Physical Interaction between Robot's Hands and Environment during Walk , 2006, 2006 6th IEEE-RAS International Conference on Humanoid Robots.

[27]  Mark R. Cutkosky,et al.  Feedback strategies for shared control in dexterous telemanipulation , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[28]  Masami Kobayashi,et al.  Telexistence cockpit for humanoid robot control , 2003, Adv. Robotics.