Multilevel IRT using dichotomous and polytomous response data.

A structural multilevel model is presented where some of the variables cannot be observed directly but are measured using tests or questionnaires. Observed dichotomous or ordinal polytomous response data serve to measure the latent variables using an item response theory model. The latent variables can be defined at any level of the multilevel model. A Bayesian procedure Markov chain Monte Carlo (MCMC), to estimate all parameters simultaneously is presented. It is shown that certain model checks and model comparisons can be done using the MCMC output. The techniques are illustrated using a simulation study and an application involving students' achievements on a mathematics test and test results regarding management characteristics of teachers and principles.

[1]  L. Mark Berliner,et al.  Subsampling the Gibbs Sampler , 1994 .

[2]  Raymond J. Adams,et al.  Multilevel Item Response Models: An Approach to Errors in Variables Regression , 1997 .

[3]  Kamel Jedidi,et al.  Bayesian factor analysis for multilevel binary observations , 2000 .

[4]  J H Albert,et al.  Sequential Ordinal Modeling with Applications to Survival Data , 2001, Biometrics.

[5]  J. Albert Bayesian Estimation of Normal Ogive Item Response Curves Using Gibbs Sampling , 1992 .

[6]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[7]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[8]  Yuk Fai Cheong,et al.  HLM 6: Hierarchical Linear and Nonlinear Modeling , 2000 .

[9]  G. Masters The Partial Credit Model , 2016 .

[10]  Aeilko H. Zwinderman,et al.  Response Models with Manifest Predictors , 1997 .

[11]  James E. Carlson,et al.  Full-Information Factor Analysis for Polytomous Item Responses , 1995 .

[12]  Xiao-Li Meng,et al.  POSTERIOR PREDICTIVE ASSESSMENT OF MODEL FITNESS VIA REALIZED DISCREPANCIES , 1996 .

[13]  Mark Wilson,et al.  The partial credit model and null categories , 1993 .

[14]  William J. Browne,et al.  Implementation and performance issues in the Bayesian and likelihood fitting of multilevel models , 2000, Comput. Stat..

[15]  Ming-Hui Chen,et al.  Monte Carlo Estimation of Bayesian Credible and HPD Intervals , 1999 .

[16]  J. Fox,et al.  Bayesian estimation of a multilevel IRT model using gibbs sampling , 2001 .

[17]  Peter M. Bentler,et al.  Structural equation models with continuous and polytomous variables , 1992 .

[18]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[19]  R. Darrell Bock,et al.  Multilevel analysis of educational data , 1989 .

[20]  F. Samejima Estimation of latent ability using a response pattern of graded scores , 1968 .

[21]  M. Newton Approximate Bayesian-inference With the Weighted Likelihood Bootstrap , 1994 .

[22]  Jean-Paul Fox,et al.  Bayesian modeling of measurement error in predictor variables using item response theory , 2003 .

[23]  Arthur P. Dempster,et al.  The direct use of likelihood for significance testing , 1997, Stat. Comput..

[24]  Jim Albert,et al.  Ordinal Data Modeling , 2000 .

[25]  H. Goldstein Multilevel Statistical Models , 2006 .

[26]  D. Lindley,et al.  Bayes Estimates for the Linear Model , 1972 .

[27]  Akihito Kamata,et al.  Item Analysis by the Hierarchical Generalized Linear Model. , 2001 .

[28]  S Y Lee,et al.  Statistical analysis of nonlinear structural equation models with continuous and polytomous data. , 2000, The British journal of mathematical and statistical psychology.

[29]  A. Gelfand,et al.  Bayesian Model Choice: Asymptotics and Exact Calculations , 1994 .

[30]  Brian W. Junker,et al.  Applications and Extensions of MCMC in IRT: Multiple Item Types, Missing Data, and Rated Responses , 1999 .

[31]  Aeilko H. Zwinderman,et al.  A generalized rasch model for manifest predictors , 1991 .

[32]  Kimberly S. Maier A Rasch Hierarchical Measurement Model , 2001 .

[33]  A. Béguin,et al.  MCMC estimation and some model-fit analysis of multidimensional IRT models , 2001 .

[34]  Peter Congdon Bayesian statistical modelling , 2002 .

[35]  Mary Kathryn Cowles,et al.  Accelerating Monte Carlo Markov chain convergence for cumulative-link generalized linear models , 1996, Stat. Comput..

[36]  S. Geisser,et al.  A Predictive Approach to Model Selection , 1979 .

[37]  S. E. Hills,et al.  Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling , 1990 .

[38]  Jun S. Liu,et al.  Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes , 1994 .

[39]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[40]  A. Béguin,et al.  MCMC estimation of multidimensional IRT models , 1998 .

[41]  Gideon J. Mellenbergh,et al.  Conceptual Notes on Models for Discrete Polytomous Item Responses , 1995 .

[42]  Murray Aitkin The calibration of P-values, posterior Bayes factors and the AIC from the posterior distribution of the likelihood , 1997, Stat. Comput..

[43]  Stephen W. Raudenbush,et al.  1. Ecometrics: Toward a Science of Assessing Ecological Settings, with Application to the Systematic Social Observation of Neighborhoods , 1999 .