IMPROVED DARK ENERGY CONSTRAINTS FROM ∼100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES

We combine the CfA3 supernovae Type Ia (SN Ia) sample with samples from the literature to calculate improved constraints on the dark energy equation of state parameter, w. The CfA3 sample is added to the Union set of Kowalski et al. to form the Constitution set and, combined with a BAO prior, produces 1 + w = 0.013+0.066 –0.068 (0.11 syst), consistent with the cosmological constant. The CfA3 addition makes the cosmologically useful sample of nearby SN Ia between 2.6 and 2.9 times larger than before, reducing the statistical uncertainty to the point where systematics play the largest role. We use four light-curve fitters to test for systematic differences: SALT, SALT2, MLCS2k2 (RV = 3.1), and MLCS2k2 (RV = 1.7). SALT produces high-redshift Hubble residuals with systematic trends versus color and larger scatter than MLCS2k2. MLCS2k2 overestimates the intrinsic luminosity of SN Ia with 0.7 < Δ < 1.2. MLCS2k2 with RV = 3.1 overestimates host-galaxy extinction while RV 1.7 does not. Our investigation is consistent with no Hubble bubble. We also find that, after light-curve correction, SN Ia in Scd/Sd/Irr hosts are intrinsically fainter than those in E/S0 hosts by 2σ, suggesting that they may come from different populations. We also find that SN Ia in Scd/Sd/Irr hosts have low scatter (0.1 mag) and reddening. Current systematic errors can be reduced by improving SN Ia photometric accuracy, by including the CfA3 sample to retrain light-curve fitters, by combining optical SN Ia photometry with near-infrared photometry to understand host-galaxy extinction, and by determining if different environments give rise to different intrinsic SN Ia luminosity after correction for light-curve shape and color.

[1]  Cepheid Calibrations from the Hubble Space Telescope of the Luminosity of Two Recent Type Ia Supernovae and a Redetermination of the Hubble Constant , 2004, astro-ph/0503159.

[2]  A Local Hubble Bubble from SNe Ia , 1998, astro-ph/9802252.

[3]  et al,et al.  UBVRI Light Curves of 44 Type Ia Supernovae , 2005 .

[4]  Adam G. Riess,et al.  BVRI Light Curves for 22 Type Ia Supernovae , 1998 .

[5]  P. Astier,et al.  SALT : a spectral adaptive light curve template for type Ia supernovae , 2005 .

[6]  Extinction and Radial Distribution of Supernova Properties in Their Parent Galaxies , 1997, astro-ph/9711311.

[7]  M. S. Burns,et al.  SPECTRA AND HUBBLE SPACE TELESCOPE LIGHT CURVES OF SIX TYPE Ia SUPERNOVAE AT 0.511 < z < 1.12 AND THE UNION2 COMPILATION , 2010, 1004.1711.

[8]  N. B. Suntzeff,et al.  Supernova Limits on the Cosmic Equation of State , 1998, astro-ph/9806396.

[9]  Spectra of high-redshift type Ia supernovae and a comparison with their low-redshift counterparts , 2005, astro-ph/0509041.

[10]  Armin Rest,et al.  Type Ia Supernovae Are Good Standard Candles in the Near Infrared: Evidence from PAIRITEL , 2007, 0711.2068.

[11]  F. Mannucci,et al.  Two populations of progenitors for type ia supernovae , 2005, astro-ph/0510315.

[12]  M. Sullivan,et al.  SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators , 2007, astro-ph/0701828.

[13]  Stefano Casertano,et al.  New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy , 2006, astro-ph/0611572.

[14]  N. B. Suntzeff,et al.  Constraining Cosmic Evolution of Type Ia Supernovae , 2007, 0710.2338.

[15]  S. Jha,et al.  Supernovae in Early-Type Galaxies: Directly Connecting Age and Metallicity with Type Ia Luminosity , 2008, 0805.4360.

[16]  E. Commins Observational selection, host galaxy dust, and Type Ia supernovae , 2004 .

[17]  A Definitive Measurement of Time Dilation in the Spectral Evolution of the Moderate-Redshift Type Ia Supernova 1997ex , 2005, astro-ph/0504481.

[18]  A. Uomoto,et al.  The optical light curves of SN 1980N and SN 1981D in NGC 1316 (Fornax A) , 1991 .

[19]  L. Bildsten,et al.  The Type Ia Supernova Rate , 2005, astro-ph/0507456.

[20]  A. Riess,et al.  Uniformity of (V–Near-Infrared) Color Evolution of Type Ia Supernovae and Implications for Host Galaxy Extinction Determination , 1999, astro-ph/9912219.

[21]  M. S. Burns,et al.  The Hubble diagram of type Ia supernovae as a function of host galaxy morphology , 2002, astro-ph/0211444.

[22]  I. Zehavi,et al.  A Local Hubble Bubble from Type Ia Supernovae? , 1998 .

[23]  M. Phillips,et al.  The reddening-free decline rate versus luminosity relationship for type ia supernovae , 1999, astro-ph/9907052.

[24]  J. Neill,et al.  Gemini Spectroscopy of Supernovae from the Supernova Legacy Survey: Improving High-Redshift Supernova Selection and Classification , 2005, astro-ph/0509195.

[25]  Mamoru Doi,et al.  New Constraints on ΩM, ΩΛ, and w from an Independent Set of 11 High-Redshift Supernovae Observed with the Hubble Space Telescope , 2003 .

[26]  W. M. Wood-Vasey,et al.  Using Line Profiles to Test the Fraternity of Type Ia Supernovae at High and Low Redshifts , 2005, astro-ph/0510089.

[27]  Adam G. Riess,et al.  Improved Distances to Type Ia Supernovae with Multicolor Light-Curve Shapes: MLCS2k2 , 2006 .

[28]  R. Ellis,et al.  Rates and Properties of Type Ia Supernovae as a Function of Mass and Star Formation in Their Host Galaxies , 2006, astro-ph/0605455.

[29]  W. M. Wood-Vasey,et al.  Scrutinizing Exotic Cosmological Models Using ESSENCE Supernova Data Combined with Other Cosmological Probes , 2007, astro-ph/0701510.

[30]  Christopher Hirata,et al.  Findings of the Joint Dark Energy Mission Figure of Merit Science Working Group , 2009, 0901.0721.

[31]  P. E. Nugent,et al.  K-corrections and spectral templates of Type Ia supernovae , 2007 .

[32]  Mark Sullivan,et al.  Predicted and Observed Evolution in the Mean Properties of Type Ia Supernovae with Redshift , 2007 .

[33]  M. Sullivan,et al.  SiFTO: An Empirical Method for Fitting SN Ia Light Curves , 2008, 0803.3441.

[34]  23 High Redshift Supernovae from the IfA Deep Survey: Doubling the SN Sample at z>0.7 , 2003, astro-ph/0310843.

[35]  R. Ellis,et al.  Measurements of the cosmological parameters omega and lambda from the first seven supernovae at z greater than or equal to 0.35 , 1996, astro-ph/9608192.

[36]  Adam G. Riess,et al.  Twenty-Three High-Redshift Supernovae from the Institute for Astronomy Deep Survey: Doubling the Supernova Sample at z > 0.7 , 2004 .

[37]  R. Miquel,et al.  Is dark energy dynamical? Prospects for an answer , 2004, astro-ph/0409411.

[38]  N. B. Suntzeff,et al.  The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry , 2007, astro-ph/0701043.

[39]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[40]  R. Ellis,et al.  Verifying the Cosmological Utility of Type Ia Supernovae: Implications of a Dispersion in the Ultraviolet Spectra , 2007, 0710.3896.

[41]  Gerson Goldhaber,et al.  Multicolor Light Curves of Type Ia Supernovae on the Color-Magnitude Diagram: A Novel Step toward More Precise Distance and Extinction Estimates , 2003, astro-ph/0302341.

[42]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[43]  G. Graves,et al.  OPTICAL SPECTROSCOPY OF TYPE Ia SUPERNOVAE , 2008, The Astronomical Journal.

[44]  N. B. Suntzeff,et al.  Observational Constraints on the Nature of Dark Energy: First Cosmological Results from the ESSENCE Supernova Survey , 2007, astro-ph/0701041.

[45]  A. S. Fruchter,et al.  Timescale Stretch Parameterization of Type Ia Supernova B-Band Light Curves , 2001, astro-ph/0104382.

[46]  W. M. Wood-Vasey,et al.  Measurement of Ωm, ΩΛ from a Blind Analysis of Type Ia Supernovae with CMAGIC: Using Color Information to Verify the Acceleration of the Universe , 2006, astro-ph/0602411.

[47]  M. Phillips,et al.  The Absolute Magnitudes of Type IA Supernovae , 1993 .

[48]  A New Method to Calibrate the Magnitudes of Type Ia Supernovae at Maximum Light , 2006, astro-ph/0603407.

[49]  M. Phillips,et al.  The Absolute Luminosities of the Calan/Tololo Type Ia Supernovae , 1996, astro-ph/9609059.

[50]  W. M. Wood-Vasey,et al.  Improved Cosmological Constraints from New, Old, and Combined Supernova Data Sets , 2008, 0804.4142.

[51]  J. Vanderplas,et al.  FIRST-YEAR SLOAN DIGITAL SKY SURVEY-II SUPERNOVA RESULTS: HUBBLE DIAGRAM AND COSMOLOGICAL PARAMETERS , 2009, 0908.4274.

[52]  Marco Riello,et al.  Extinction correction for Type Ia supernova rates – I. The model , 2005, astro-ph/0506684.

[53]  Wendy L. Freedman,et al.  Report of the Dark Energy Task Force , 2006, astro-ph/0609591.

[54]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[55]  Peter Garnavich,et al.  Cosmological Results from High-z Supernovae , 2003, astro-ph/0305008.