The unified discrete surface Ricci flow

Ricci flow deforms the Riemannian metric proportionally to the curvature, such that the curvature evolves according to a heat diffusion process and eventually becomes constant everywhere. Ricci flow has demonstrated its great potential by solving various problems in many fields, which can be hardly handled by alternative methods so far. This work introduces the unified theoretic framework for discrete surface Ricci flow, including all the common schemes: tangential circle packing, Thurston's circle packing, inversive distance circle packing and discrete Yamabe flow. Furthermore, this work also introduces a novel schemes, virtual radius circle packing and the mixed type schemes, under the unified framework. This work gives explicit geometric interpretation to the discrete Ricci energies for all the schemes with all back ground geometries, and the corresponding Hessian matrices. The unified frame work deepens our understanding to the discrete surface Ricci flow theory, and has inspired us to discover the new schemes, improved the flexibility and robustness of the algorithms, greatly simplified the implementation and improved the efficiency. Experimental results show the unified surface Ricci flow algorithms can handle general surfaces with different topologies, and is robust to meshes with different qualities, and is effective for solving real problems.

[1]  Feng Luo Rigidity of polyhedral surfaces, II , 2014 .

[2]  P. Schröder,et al.  Conformal equivalence of triangle meshes , 2008, SIGGRAPH 2008.

[3]  Sa'ar Hersonsky Energy and length in a topological planar quadrilateral , 2008, Eur. J. Comb..

[4]  Igor Rivin Euclidean Structures on Simplicial Surfaces and Hyperbolic Volume , 1994 .

[5]  Sa'ar Hersonsky,et al.  Boundary value problems on planar graphs and flat surfaces with integer cone singularities, I: The Dirichlet problem , 2009 .

[6]  E. M. Andreev ON CONVEX POLYHEDRA OF FINITE VOLUME IN LOBAČEVSKIĬ SPACE , 1970 .

[7]  Y. C. Verdière Un principe variationnel pour les empilements de cercles , 1991 .

[8]  Ren Guo Local rigidity of inversive distance circle packing , 2009, 0903.1401.

[9]  Gregory Leibon Characterizing the Delaunay decompositions of compact hyperbolic surfaces , 2001, math/0103174.

[10]  SA’AR HERSONSKY,et al.  BOUNDARY VALUE PROBLEMS ON PLANAR GRAPHS AND FLAT SURFACES WITH INTEGER CONE SINGULARITIES , 2011 .

[11]  Ren Guo,et al.  Rigidity of polyhedral surfaces, II , 2006, math/0612714.

[12]  Marc Levoy,et al.  The digital Michelangelo project , 1999, Second International Conference on 3-D Digital Imaging and Modeling (Cat. No.PR00062).

[13]  David Glickenstein,et al.  Duality structures and discrete conformal variations of piecewise constant curvature surfaces , 2014, 1407.7045.

[14]  Boris Springborn A variational principle for weighted Delaunay triangulations and hyperideal polyhedra , 2006, math/0603097.

[15]  David Glickenstein A combinatorial Yamabe flow in three dimensions , 2005 .

[16]  B. Rodin,et al.  The convergence of circle packings to the Riemann mapping , 1987 .

[17]  David Glickenstein,et al.  1 0 Ju n 20 05 A maximum principle for combinatorial Yamabe flow , 2005 .

[18]  B. Chow,et al.  COMBINATORIAL RICCI FLOWS ON SURFACES , 2002, math/0211256.

[19]  A. Bobenko,et al.  Variational principles for circle patterns and Koebe’s theorem , 2002, math/0203250.

[20]  I. M. Slegers Ricci flow on surfaces , 2015 .

[21]  Xianfeng Gu,et al.  Discrete Surface Ricci Flow , 2008, IEEE Transactions on Visualization and Computer Graphics.

[22]  Hong Qin,et al.  Ricci Flow for 3 D Shape Analysis , 2007 .

[23]  Peter Schröder,et al.  Conformal equivalence of triangle meshes , 2008, ACM Trans. Graph..

[24]  Sa'ar Hersonsky,et al.  Boundary Value Problems on Planar Graphs and Flat Surfaces with integer cone singularities, II: The mixed Dirichlet-Neumann Problem , 2010, 1006.0026.

[25]  W. Thurston The geometry and topology of 3-manifolds , 1979 .

[26]  Feng Luo COMBINATORIAL YAMABE FLOW ON SURFACES , 2003 .

[27]  Wei Zeng,et al.  Supine and Prone Colon Registration Using Quasi-Conformal Mapping , 2010, IEEE Transactions on Visualization and Computer Graphics.

[28]  O. Schramm,et al.  On the convergence of circle packings to the Riemann map , 1996 .

[29]  Philip L. Bowers,et al.  Uniformizing Dessins and Belyi Maps Via Circle Packing , 2004 .

[30]  Wei Zeng,et al.  Ricci Flow for 3D Shape Analysis , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[31]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[32]  James W. Cannon,et al.  Introduction to circle packing: the theory of discrete analytic functions , 2007 .

[33]  Xianfeng Gu,et al.  A discrete uniformization theorem for polyhedral surfaces II , 2014, Journal of Differential Geometry.

[34]  F. Luo Rigidity of Polyhedral Surfaces, III , 2010, 1010.3284.

[35]  Sen Wang,et al.  High resolution tracking of non-rigid 3D motion of densely sampled data using harmonic maps , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[36]  Bobby Bodenheimer,et al.  Synthesis and evaluation of linear motion transitions , 2008, TOGS.

[37]  Hong Qin,et al.  Manifold splines with single extraordinary point , 2007, Comput. Aided Des..

[38]  U. Pinkall,et al.  Discrete conformal maps and ideal hyperbolic polyhedra , 2010, 1005.2698.

[39]  Zheng-Xu He Rigidity of infinite disk patterns , 1999 .

[40]  Lizhen Ji,et al.  Ricci flow on surfaces with cusps , 2007 .

[41]  Wei Zeng,et al.  Ricci Flow for Shape Analysis and Surface Registration: Theories, Algorithms and Applications , 2013 .

[42]  Wei Zeng,et al.  Surface Meshing with Curvature Convergence , 2014, IEEE Transactions on Visualization and Computer Graphics.

[43]  Ren Guo,et al.  Combinatorial Yamabe flow on hyperbolic surfaces with boundary , 2010, 1003.3910.

[44]  D. Glickenstein,et al.  Discrete conformal variations and scalar curvature on piecewise flat two and three dimensional manifolds , 2009, 0906.1560.

[45]  David Glickenstein A maximum principle for combinatorial Yamabe flow , 2002 .

[46]  Saʼar Hersonsky,et al.  The triple intersection property, three dimensional extremal length, and tiling of a topological cube , 2012 .

[47]  Albert Marden,et al.  On Thurston's formulation and proof of Andreev's theorem , 1990 .

[48]  Wei Zeng,et al.  Canonical conformal mapping for high genus surfaces with boundaries , 2012, Comput. Graph..

[49]  Feng Luo,et al.  Variational principles for discrete surfaces , 2008 .

[50]  Bennett Chow,et al.  The Ricci flow on the 2-sphere , 1991 .