Robust Sensor Fusion with Self-Tuning Mixture Models

A fundamental problem of non-linear state estimation in robotics is the violation of assumptions about the sensors' error distribution. State of the art approaches reduce the impact of these violations with robust cost functions or predefined non-Gaussian error models. Both require extensive parameter tuning and fail if the sensors' error characteristic changes over time, due to environmental changes, ageing or sensor malfunctions. We demonstrate how the error distribution itself can be part of the state estimation process. Based on an efficient approximation of a Gaussian mixture, we optimize the sensor model simultaneously during the standard state estimation. Due to an implicit expectation-maximization approach, we achieve a fast convergence without prior knowledge of the true distribution parameters. We implement this self-tuning algorithm in a least-squares optimization framework and demonstrate its real time capability on a real world dataset for satellite localization of a driving vehicle. The resulting estimation quality is superior to previous robust algorithms.

[1]  Sven Lange,et al.  Incremental smoothing vs. filtering for sensor fusion on an indoor UAV , 2013, 2013 IEEE International Conference on Robotics and Automation.

[2]  Frank Dellaert,et al.  Factor Graphs for Robot Perception , 2017, Found. Trends Robotics.

[3]  John J. Leonard,et al.  A nonparametric belief solution to the Bayes tree , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[4]  Niko Sünderhauf,et al.  Switchable constraints for robust pose graph SLAM , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[5]  John J. Leonard,et al.  Robust incremental online inference over sparse factor graphs: Beyond the Gaussian case , 2013, 2013 IEEE International Conference on Robotics and Automation.

[6]  Edwin Olson,et al.  Robust sensor characterization via max-mixture models: GPS sensors , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[7]  Yasir Latif,et al.  Robust loop closing over time for pose graph SLAM , 2013, Int. J. Robotics Res..

[8]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[9]  Niko Sünderhauf Robust optimization for simultaneous localization and mapping , 2012 .

[10]  Geoffrey E. Hinton,et al.  A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.

[11]  Roland Siegwart,et al.  Self-tuning M-estimators , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[12]  Sven Lange,et al.  Dynamic Covariance Estimation — A parameter free approach to robust Sensor Fusion , 2017, 2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI).

[13]  Wolfram Burgard,et al.  Robust map optimization using dynamic covariance scaling , 2013, 2013 IEEE International Conference on Robotics and Automation.

[14]  Yasir Latif,et al.  Robust graph SLAM back-ends: A comparative analysis , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[15]  Marcus Obst,et al.  Switchable constraints and incremental smoothing for online mitigation of non-line-of-sight and multipath effects , 2013, 2013 IEEE Intelligent Vehicles Symposium (IV).

[16]  Sven Lange,et al.  Robust factor graph optimization - a comparison for sensor fusion applications , 2016, 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA).

[17]  Edwin Olson,et al.  Inference on networks of mixtures for robust robot mapping , 2013, Int. J. Robotics Res..

[18]  Marcus Obst,et al.  Multipath mitigation in GNSS-based localization using robust optimization , 2012, 2012 IEEE Intelligent Vehicles Symposium.