Optoelectronic control of surface charge and translocation dynamics in solid-state nanopores

Nanopores can be used to detect and analyse biomolecules. However, controlling and tuning the translocation speed of molecules through a pore is difficult, limiting the wider application of these sensors. Here we show that low-power visible light can be used to control surface charge in solid-state nanopores and can influence the translocation dynamics of DNA and proteins. We find that laser light precisely focused at a nanopore can induce reversible negative surface charge densities as high as 1 C/m2, and that the effect is tuneable on sub-millisecond timescales by adjusting the photon density. By modulating surface charge, we can control the amount of electro-osmotic flow through the nanopore, which affects the speed of translocating biomolecules. In particular, a few mW of green light can reduce the translocation speed of double-stranded DNA by more than an order of magnitude and the translocation speed of small globular proteins such as ubiquitin by more than two orders of magnitude. The laser light can also be used to unclog blocked pores. Finally, we discuss a mechanism to account for the observed optoelectronic phenomenon.

[1]  Joseph Wang,et al.  Electrochemical sensors, biosensors, and their biomedical applications , 2008 .

[2]  C. Dekker Solid-state nanopores. , 2007, Nature nanotechnology.

[3]  U. Keyser,et al.  Salt dependence of ion transport and DNA translocation through solid-state nanopores. , 2006, Nano letters.

[4]  Michael L. Klein,et al.  Discrimination of methylcytosine from hydroxymethylcytosine in DNA molecules. , 2011, Journal of the American Chemical Society.

[5]  A. Meller,et al.  pH tuning of DNA translocation time through organically functionalized nanopores. , 2013, ACS nano.

[6]  Klaus Schulten,et al.  Detection and Quantification of Methylation in DNA using Solid-State Nanopores , 2013, Scientific Reports.

[7]  Derek Stein,et al.  Charge regulation in nanopore ionic field-effect transistors. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Meni Wanunu,et al.  DNA translocation governed by interactions with solid-state nanopores. , 2008, Biophysical journal.

[9]  Sung-Wook Nam,et al.  Ionic field effect transistors with sub-10 nm multiple nanopores. , 2009, Nano letters.

[10]  R. Mayer,et al.  Ubiquitin and ubiquitin-like proteins as multifunctional signals , 2005, Nature Reviews Molecular Cell Biology.

[11]  K. Healy Nanopore-based single-molecule DNA analysis. , 2007, Nanomedicine.

[12]  U. Keyser,et al.  Nanopore tomography of a laser focus. , 2005, Nano letters.

[13]  Zhonghua Ni,et al.  Electroosmotic flow in nanotubes with high surface charge densities. , 2008, Nano letters.

[14]  Makusu Tsutsui,et al.  Controlling DNA translocation through gate modulation of nanopore wall surface charges. , 2011, ACS nano.

[15]  Pascal Silberzan,et al.  From the Cover: The dynamics of genomic-length DNA molecules in 100-nm channels. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[16]  C. Dekker,et al.  Control of shape and material composition of solid-state nanopores. , 2009, Nano letters.

[17]  Stijn van Dorp,et al.  Origin of the electrophoretic force on DNA in solid-state nanopores , 2009 .

[18]  M. Godin,et al.  Precise control of the size and noise of solid-state nanopores using high electric fields , 2012, Nanotechnology.

[19]  D. Talaga,et al.  Single-molecule protein unfolding in solid state nanopores. , 2009, Journal of the American Chemical Society.

[20]  S. Garaj,et al.  Probing surface charge fluctuations with solid-state nanopores. , 2009, Physical review letters.

[21]  T. Moustakas The role of extended defects on the performance of optoelectronic devices in nitride semiconductors , 2013 .

[22]  J. Zuo,et al.  DNA Sensing Using Nanocrystalline Surface‐Enhanced Al2O3 Nanopore Sensors , 2010, Advanced functional materials.

[23]  M. Muthukumar,et al.  Polymer capture by electro-osmotic flow of oppositely charged nanopores. , 2007, The Journal of chemical physics.

[24]  Jin He,et al.  Origin of giant ionic currents in carbon nanotube channels. , 2011, ACS nano.

[25]  U. Rant,et al.  Electrically facilitated translocations of proteins through silicon nitride nanopores: conjoint and competitive action of diffusion, electrophoresis, and electroosmosis. , 2010, Nano letters.

[26]  C. Dekker,et al.  Detection of nucleosomal substructures using solid-state nanopores. , 2012, Nano letters.

[27]  Stephen C. Rand,et al.  Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition , 1995 .

[28]  K. Svoboda,et al.  Biological applications of optical forces. , 1994, Annual review of biophysics and biomolecular structure.

[29]  Makusu Tsutsui,et al.  Gate manipulation of DNA capture into nanopores. , 2011, ACS nano.

[30]  Chuen Ho,et al.  Electrolytic transport through a synthetic nanometer-diameter pore. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Cees Dekker,et al.  Fast translocation of proteins through solid state nanopores. , 2013, Nano letters.

[32]  John Robertson,et al.  Gap states in silicon nitride , 1984 .

[33]  A. Radenović,et al.  Nanopore detection of single molecule RNAP-DNA transcription complex. , 2012, Nano letters.

[34]  Alexander Y. Grosberg,et al.  Electrostatic Focusing of Unlabeled DNA into Nanoscale Pores using a Salt Gradient , 2009, Nature nanotechnology.

[35]  A. Meller,et al.  Rapid Fabrication of Uniformly Sized Nanopores and Nanopore Arrays for Parallel DNA Analysis , 2006 .

[36]  P. Batson,et al.  Formation of nanopores in a SiN/SiO2 membrane with an electron beam , 2005 .

[37]  Sun Weimin,et al.  Dependence of zeta potential on polyelectrolyte moving through a solid-state nanopore , 2009 .

[38]  Aleksei Aksimentiev,et al.  Slowing down DNA translocation through a nanopore in lithium chloride. , 2012, Nano letters.

[39]  M. Unlu,et al.  Intensity dependence of photoluminescence in GaN thin films , 1994 .

[40]  J. Zuo,et al.  Sensors: DNA Sensing Using Nanocrystalline Surface-Enhanced Al2O3 Nanopore Sensors (Adv. Funct. Mater. 8/2010) , 2010 .

[41]  D. Ly,et al.  Electronic barcoding of a viral gene at the single-molecule level. , 2012, Nano letters.

[42]  D. McNabb,et al.  Slowing DNA translocation in a solid-state nanopore. , 2005, Nano letters.

[43]  David G. Grier,et al.  The charge of glass and silica surfaces , 2001 .

[44]  R. Bashir,et al.  Nanopore sensors for nucleic acid analysis. , 2011, Nature nanotechnology.

[45]  Sheereen Majd,et al.  Controlling protein translocation through nanopores with bio-inspired fluid walls , 2011 .

[46]  Christoph F Schmidt,et al.  Laser-induced heating in optical traps. , 2003, Biophysical journal.

[47]  M. Reed,et al.  Field-effect reconfigurable nanofluidic ionic diodes. , 2011, Nature communications.

[48]  Jerzy Kanicki,et al.  Nature of the Si and N dangling bonds in silicon nitride , 1995 .

[49]  P. Renaud,et al.  Ionic transport phenomena in nanofluidics: experimental and theoretical study of the exclusion-enrichment effect on a chip. , 2005, Nano letters.