Integral Operators on Sparse Grids

In this paper we are concerned with the construction and use of wavelet approximation spaces for the fast evaluation of integral expressions. The spaces are based on biorthogonal anisotropic tensor product wavelets. We introduce sparse grid (hyperbolic cross) approximation spaces which are adapted not only to the smoothness of the kernel but also to the norm in which the error is measured. Furthermore, we introduce compression schemes for the corresponding discretizations. Numerical examples for the Laplace equation with Dirichlet boundary conditions and an additional integral term with a smooth kernel demonstrate the validity of our theoretical results.

[1]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[2]  I. Daubechies,et al.  Wavelets on the Interval and Fast Wavelet Transforms , 1993 .

[3]  V. N. Temli︠a︡kov Approximation of periodic functions , 1993 .

[4]  Sergei V. Pereverzev,et al.  Information Complexity of Multivariate Fredholm Equations in Sobolev Classes , 1995 .

[5]  W. J. Gordon,et al.  Ritz-Galerkin approximations in blending function spaces , 1976 .

[6]  Karin Frank Complexity of Local Solution of Multivariate Integral Equations , 1995, J. Complex..

[7]  Silvia Bertoluzza,et al.  On the adaptive computation of integrals of wavelets , 2000 .

[8]  W. Sweldens,et al.  Quadrature formulae and asymptotic error expansions for wavelet approximations of smooth functions , 1994 .

[9]  F. Delvos d-Variate Boolean interpolation , 1982 .

[10]  H. Woxniakowski Information-Based Complexity , 1988 .

[11]  G. Baszenski n-th Order Polynomial Spline Blending , 1985 .

[12]  Aihui Zhou,et al.  Error analysis of the combination technique , 1999, Numerische Mathematik.

[13]  S. V. Pereverzev Complexity of the problem of finding the solutions of fredholm equations of the second kind with smooth kernels. I , 1988 .

[14]  S. Knapek Hyperbolic Cross Approximation Of Integral Operators With Smooth Kernel , 2000 .

[15]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[16]  W. Dahmen Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.

[17]  M. Griebel,et al.  Optimized Tensor-Product Approximation Spaces , 2000 .

[18]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[19]  Wolfgang Dahmen,et al.  Wavelet approximation methods for pseudodifferential equations II: Matrix compression and fast solution , 1993, Adv. Comput. Math..

[20]  W. Dahmen Stability of Multiscale Transformations. , 1995 .

[21]  R. DeVore,et al.  Hyperbolic Wavelet Approximation , 1998 .

[22]  Y. Meyer,et al.  Wavelets: Calderón-Zygmund and Multilinear Operators , 1997 .

[23]  R. Schneider,et al.  Multiskalen- und Wavelet-Matrixkompression: Analysisbasierte Methoden zur effizienten Lösung großer vollbesetzter Gleichungssysteme , 1995 .

[24]  R. DeVore,et al.  Compression of wavelet decompositions , 1992 .

[25]  Hans-Joachim Bungartz,et al.  Pointwise Convergence Of The Combination Technique For Laplace's Equation , 1994 .

[26]  IntervalFrank Koster,et al.  Orthogonal Wavelets on the , 1998 .

[27]  Michael Griebel,et al.  Sparse grids for boundary integral equations , 1999, Numerische Mathematik.

[28]  Din' Zung Number of integral points in a certain set and the approximation of functions of several variables , 1984 .

[29]  S. V. Pereverzev An estimate of the complexity of the approximate solution of fredholm equations of the second kind with differentiable kernels , 1989 .