A improved incompressible lattice Boltzmann model for time-independent flows

It is well known that the lattice Boltzmann equation method (LBE) can model the incompressible Navier-Stokes (NS) equations in the limit where density goes to a constant. In a LBE simulation, however, the density cannot be constant because pressure is equal to density times the square of sound speed, hence a compressibility error seems inevitable for the LBE to model incompressible flows. This work uses a modified equilibrium distribution and a modified velocity to construct an LBE which models time-independent (steady) incompressible flows with significantly reduced compressibility error. Computational results in 2D cavity flow and in a 2D flow with an exact solution are reported.