Temporal scatterplots

Visualizing high-dimensional data on a 2D canvas is generally challenging. It becomes significantly more difficult when multiple time-steps are to be presented, as the visual clutter quickly increases. Moreover, the challenge to perceive the significant temporal evolution is even greater. In this paper, we present a method to plot temporal high-dimensional data in a static scatterplot; it uses the established PCA technique to project data from multiple time-steps. The key idea is to extend each individual displacement prior to applying PCA, so as to skew the projection process, and to set a projection plane that balances the directions of temporal change and spatial variance. We present numerous examples and various visual cues to highlight the data trajectories, and demonstrate the effectiveness of the method for visualizing temporal data.

[1]  Jeffrey A. Fessler,et al.  Optimally Weighted PCA for High-Dimensional Heteroscedastic Data , 2018, SIAM Journal on Mathematics of Data Science.

[2]  Bettina Speckmann,et al.  Spatially and Temporally Coherent Visual Summaries , 2019, ArXiv.

[3]  Chi-Wing Fu,et al.  Optimizing Color Assignment for Perception of Class Separability in Multiclass Scatterplots , 2019, IEEE Transactions on Visualization and Computer Graphics.

[4]  Herman Chernoff,et al.  The Use of Faces to Represent Points in k- Dimensional Space Graphically , 1973 .

[5]  Yong Wang,et al.  A Vector Field Design Approach to Animated Transitions , 2018, IEEE Transactions on Visualization and Computer Graphics.

[6]  Michael J. McGuffin,et al.  GPLOM: The Generalized Plot Matrix for Visualizing Multidimensional Multivariate Data , 2013, IEEE Transactions on Visualization and Computer Graphics.

[7]  Michael C. Hout,et al.  Multidimensional Scaling , 2003, Encyclopedic Dictionary of Archaeology.

[8]  Danyel Fisher,et al.  Animation for Visualization: Opportunities and Drawbacks , 2010, Beautiful Visualization.

[9]  Luis Gustavo Nonato,et al.  Multidimensional Projection for Visual Analytics: Linking Techniques with Distortions, Tasks, and Layout Enrichment , 2019, IEEE Transactions on Visualization and Computer Graphics.

[10]  Jian Pei,et al.  Online Visual Analytics of Text Streams , 2015, IEEE Transactions on Visualization and Computer Graphics.

[11]  Robert L. Grossman,et al.  High-Dimensional Visual Analytics: Interactive Exploration Guided by Pairwise Views of Point Distributions , 2006, IEEE Transactions on Visualization and Computer Graphics.

[12]  Leland Wilkinson,et al.  ScagExplorer: Exploring Scatterplots by Their Scagnostics , 2014, 2014 IEEE Pacific Visualization Symposium.

[13]  Daniel A. Keim,et al.  Temporal MDS Plots for Analysis of Multivariate Data , 2016, IEEE Transactions on Visualization and Computer Graphics.

[14]  Kwan-Liu Ma,et al.  Proximity-based visualization of movement trace data , 2009, 2009 IEEE Symposium on Visual Analytics Science and Technology.

[15]  Paulo E. Rauber,et al.  Visualizing Time-Dependent Data Using Dynamic t-SNE , 2016, EuroVis.

[16]  Edward R. Tufte,et al.  Envisioning Information , 1990 .

[17]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[18]  Jean-Daniel Fekete,et al.  GraphDiaries: Animated Transitions andTemporal Navigation for Dynamic Networks , 2014, IEEE Transactions on Visualization and Computer Graphics.

[19]  Daniel A. Keim,et al.  Visualization of streaming data: Observing change and context in information visualization techniques , 2013, 2013 IEEE International Conference on Big Data.

[20]  Valerio Pascucci,et al.  Visualizing High-Dimensional Data: Advances in the Past Decade , 2017, IEEE Transactions on Visualization and Computer Graphics.

[21]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[22]  Hans-Peter Kriegel,et al.  VisDB: database exploration using multidimensional visualization , 1994, IEEE Computer Graphics and Applications.

[23]  Daniel A. Keim,et al.  Information Visualization and Visual Data Mining , 2002, IEEE Trans. Vis. Comput. Graph..

[24]  Daniel W. Archambault,et al.  Animation, Small Multiples, and the Effect of Mental Map Preservation in Dynamic Graphs , 2011, IEEE Transactions on Visualization and Computer Graphics.

[25]  Alfred Inselberg,et al.  The plane with parallel coordinates , 1985, The Visual Computer.

[26]  Kwan-Liu Ma,et al.  The Generalized Sensitivity Scatterplot , 2013, IEEE Transactions on Visualization and Computer Graphics.

[27]  John T. Stasko,et al.  Effectiveness of Animation in Trend Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[28]  Michael Gleicher,et al.  Splatterplots: Overcoming Overdraw in Scatter Plots , 2013, IEEE Transactions on Visualization and Computer Graphics.

[29]  Kwan-Liu Ma,et al.  An Incremental Dimensionality Reduction Method for Visualizing Streaming Multidimensional Data , 2019, IEEE Transactions on Visualization and Computer Graphics.

[30]  Daniel Cohen-Or,et al.  Winglets: Visualizing Association with Uncertainty in Multi-class Scatterplots , 2020, IEEE Transactions on Visualization and Computer Graphics.

[31]  Pierre Dragicevic,et al.  Rolling the Dice: Multidimensional Visual Exploration using Scatterplot Matrix Navigation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[32]  George A Alvarez,et al.  How many objects can you track? Evidence for a resource-limited attentive tracking mechanism. , 2007, Journal of vision.

[33]  Eser Kandogan Star Coordinates: A Multi-dimensional Visualization Technique with Uniform Treatment of Dimensions , 2000 .

[34]  Michael Burch,et al.  A Taxonomy and Survey of Dynamic Graph Visualization , 2017, Comput. Graph. Forum.

[35]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.