A mixture model-based approach to the clustering of exponential repeated data

The analysis of finite mixture models for exponential repeated data is considered. The mixture components correspond to different unknown groups of the statistical units. Dependency and variability of repeated data are taken into account through random effects. For each component, an exponential mixed model is thus defined. When considering parameter estimation in this mixture of exponential mixed models, the EM-algorithm cannot be directly used since the marginal distribution of each mixture component cannot be analytically derived. In this paper, we propose two parameter estimation methods. The first one uses a linearisation specific to the exponential distribution hypothesis within each component. The second approach uses a Metropolis-Hastings algorithm as a building block of a general MCEM-algorithm.

[1]  Olivier Gaudoin,et al.  A generalized geometric de-eutrophication software-reliability model , 1994 .

[2]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[3]  Christian Gourieroux,et al.  Statistique et modèles économétriques , 1989 .

[4]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[5]  Catherine Trottier,et al.  Empirical model selection in generalized linear mixed effects models , 2008, Comput. Stat..

[6]  C. McCulloch Maximum Likelihood Algorithms for Generalized Linear Mixed Models , 1997 .

[7]  Karl Mosler,et al.  A Cautionary Note on Likelihood Ratio Tests in Mixture Models , 2000 .

[8]  Christian Hennig,et al.  Identifiablity of Models for Clusterwise Linear Regression , 2000, J. Classif..

[9]  H. Akaike A new look at the statistical model identification , 1974 .

[10]  Gérard Govaert,et al.  Assessing a Mixture Model for Clustering with the Integrated Completed Likelihood , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  G. Celeux,et al.  A stochastic approximation type EM algorithm for the mixture problem , 1992 .

[12]  C. Gouriéroux,et al.  12 Pseudo-likelihood methods , 1993 .

[13]  W. DeSarbo,et al.  A mixture likelihood approach for generalized linear models , 1995 .

[14]  E. Kuhn,et al.  Coupling a stochastic approximation version of EM with an MCMC procedure , 2004 .

[15]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[16]  Christophe Biernacki,et al.  Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models , 2003, Comput. Stat. Data Anal..

[17]  L. Wasserman,et al.  Computing Bayes Factors by Combining Simulation and Asymptotic Approximations , 1997 .

[18]  G. Celeux,et al.  Mixture of linear mixed models for clustering gene expression profiles from repeated microarray experiments , 2005 .

[19]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[20]  M. Degroot Optimal Statistical Decisions , 1970 .

[21]  É. Moulines,et al.  Convergence of a stochastic approximation version of the EM algorithm , 1999 .

[22]  A. Baghdadli,et al.  The relationship between expressive language level and psychological development in children with autism 5 years of age , 2005, Autism : the international journal of research and practice.

[23]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[24]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[25]  Adrian E. Raftery,et al.  Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .

[26]  Geoffrey J. McLachlan,et al.  Mixture models : inference and applications to clustering , 1989 .

[27]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[28]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[29]  V. Hasselblad Finite mixtures of distributions from the exponential family , 1969 .

[30]  Marie-José Martinez Modèles linéaires généralisés à effets aléatoires : contributions aux choix de modèle et au modèle de mélange , 2006 .