Benefits of cocrystallisation in pharmaceutical materials science: an update

Objectives  We provide a brief overview of recent applications of cocrystals for improving the physico‐chemical and materials properties of active pharmaceutical ingredients, including solubility, humidity and thermal stability, dissolution rates and compressibility for tablet formation.

[1]  Peddy Vishweshwar,et al.  Pharmaceutical co-crystals. , 2006, Journal of pharmaceutical sciences.

[2]  Carolyn Pratt Brock,et al.  On the validity of Wallach's rule: on the density and stability of racemic crystals compared with their chiral counterparts , 1991 .

[3]  Aeri Park,et al.  The salt-cocrystal continuum: the influence of crystal structure on ionization state. , 2007, Molecular pharmaceutics.

[4]  G. P. Stahly Diversity in Single- and Multiple-Component Crystals. The Search for and Prevalence of Polymorphs and Cocrystals , 2007 .

[5]  L. Orola,et al.  Nicotinamide fumaric acid supramolecular cocrystals: diversity of stoichiometry , 2009 .

[6]  J. Bernstein,et al.  An Alternate Crystal Form of Gabapentin: A Cocrystal with Oxalic Acid , 2008 .

[7]  Tomohiro Sato,et al.  Molecular recognition in solid-state crystallization: colored chiral adduct formations of 1,1'-bi-2-naphthol derivatives and benzoquinone with a third component. , 2002, Chirality.

[8]  I. Miroshnyk,et al.  Pharmaceutical co-crystals–an opportunity for drug product enhancement , 2009, Expert opinion on drug delivery.

[9]  Tomohiro Sato,et al.  Visualization of molecular recognition: a novel system based on charge-transfer complexes composed of 1,1'-bi-2-naphthol derivatives and p-benzoquinone. , 2006, Organic letters.

[10]  Jeanette T. Dunlap,et al.  Crystal engineering approach to forming cocrystals of amine hydrochlorides with organic acids. Molecular complexes of fluoxetine hydrochloride with benzoic, succinic, and fumaric acids. , 2004, Journal of the American Chemical Society.

[11]  Orn Almarsson,et al.  Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals represent a new path to improved medicines? , 2003, Chemical communications.

[12]  David R. Weyna,et al.  Synthesis and Structural Characterization of Cocrystals and Pharmaceutical Cocrystals: Mechanochemistry vs Slow Evaporation from Solution , 2009 .

[13]  L. Fábián,et al.  Exploring cocrystal-cocrystal reactivity via liquid-assisted grinding: the assembling of racemic and dismantling of enantiomeric cocrystals. , 2006, Chemical communications.

[14]  L. MacGillivray,et al.  Template-Controlled Synthesis in the Solid-State , 2004 .

[15]  Aeri Park,et al.  Use of a Glutaric Acid Cocrystal to Improve Oral Bioavailability of a Low Solubility API , 2006, Pharmaceutical Research.

[16]  T. Steiner The hydrogen bond in the solid state. , 2002, Angewandte Chemie.

[17]  L. MacGillivray Organic synthesis in the solid state via hydrogen-bond-driven self-assembly. , 2008, The Journal of organic chemistry.

[18]  K. Harris,et al.  Direct structure determination of a multicomponent molecular crystal prepared by a solid-state grinding procedure. , 2003, Journal of the American Chemical Society.

[19]  Adri C. T. van Duin,et al.  Linearly concatenated cyclobutane lipids form a dense bacterial membrane , 2002, Nature.

[20]  A. Bak,et al.  Physicochemical Properties of Pharmaceutical Co-Crystals: A Case Study of Ten AMG 517 Co-Crystals , 2008 .

[21]  G. Whitesides,et al.  New Varieties of Crystalline Architecture Produced by Small Changes in Molecular Structure in Tape Complexes of Melamines and Barbiturates , 1994 .

[22]  F. Perret,et al.  Solid state structures of the complexes between the antiseptic chlorhexidine and three anionic derivatives of calix[4]arene , 2008 .

[23]  William Jones,et al.  Recent Advances in Understanding the Mechanism of Cocrystal Formation via Grinding , 2009 .

[24]  A. Bond In situ co-crystallisation as a tool for low-temperature crystal engineering. , 2003, Chemical communications.

[25]  William Jones,et al.  Achieving Polymorphic and Stoichiometric Diversity in Cocrystal Formation: Importance of Solid-State Grinding, Powder X-ray Structure Determination, and Seeding , 2005 .

[26]  G. Desiraju,et al.  Co-crystal formation and the determination of absolute configuration , 2008 .

[27]  William Jones,et al.  Testing the Sensitivity of Terahertz Spectroscopy to Changes in Molecular and Supramolecular Structure: A Study of Structurally Similar Cocrystals , 2009 .

[28]  Pei-Hua Liu,et al.  Tetrabromobutatriene: completing the perhalocumulene series. , 2004, Organic letters.

[29]  William Jones,et al.  Pharmaceutical Cocrystallization: Engineering a Remedy for Caffeine Hydration , 2005 .

[30]  Eric Westhof,et al.  Halogen bonds in biological molecules. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[31]  D. A. Norton,et al.  Androgenic Steroid Complexes with p-Bromophenol , 1965, Nature.

[32]  Changquan Calvin Sun,et al.  Improving Mechanical Properties of Caffeine and Methyl Gallate Crystals by Cocrystallization , 2008 .

[33]  J. McMahon,et al.  Crystal engineering of the composition of pharmaceutical phases. , 2003, Chemical communications.

[34]  T. Friščić,et al.  Cocrystal architecture and properties: design and building of chiral and racemic structures by solid-solid reactions. , 2007, Faraday discussions.

[35]  J. Bernstein,et al.  Designing a Cocrystal of γ‐Amino Butyric Acid , 2006 .

[36]  B. Sarma,et al.  Synthon Competition and Cooperation in Molecular Salts of Hydroxybenzoic Acids and Aminopyridines , 2009 .

[37]  S. Reutzel,et al.  Hydrogen Bond Directed Cocrystallization and Molecular Recognition Properties of Acyclic Imides , 1991 .

[38]  M. Ward Design of crystalline molecular networks with charge-assisted hydrogen bonds. , 2005, Chemical communications.

[39]  William Jones,et al.  Pharmaceutical Cocrystals: An Emerging Approach to Physical Property Enhancement , 2006 .

[40]  A. Medek,et al.  Solid-state acid-base interactions in complexes of heterocyclic bases with dicarboxylic acids: crystallography, hydrogen bond analysis, and 15N NMR spectroscopy. , 2006, Journal of the American Chemical Society.

[41]  Anatoliy N Sokolov,et al.  Enforced face-to-face stacking of organic semiconductor building blocks within hydrogen-bonded molecular cocrystals. , 2006, Journal of the American Chemical Society.

[42]  A. Newman,et al.  Pharmaceutical Cocrystals and Their Physicochemical Properties , 2009, Crystal growth & design.

[43]  G. P. Stahly,et al.  A Survey of Cocrystals Reported Prior to 2000 , 2009 .

[44]  Naír Rodríguez-Hornedo,et al.  Understanding and Predicting the Effect of Cocrystal Components and pH on Cocrystal Solubility , 2009 .

[45]  Gautam R. Desiraju,et al.  Supramolecular Synthons in Crystal Engineering—A New Organic Synthesis , 1995 .

[46]  H. Edwards,et al.  Metamorphosis of caffeine hydrate and anhydrous caffeine , 1997 .

[47]  E. Corey,et al.  Total synthesis of (+/-)-pentacycloanammoxic acid. , 2004, Journal of the American Chemical Society.

[48]  Orn Almarsson,et al.  Crystal engineering of novel cocrystals of a triazole drug with 1,4-dicarboxylic acids. , 2003, Journal of the American Chemical Society.

[49]  R. Kuroda,et al.  Chirality recognition in solvent-free solid-state crystallization: chiral adduct formation by bis-beta-naphthol derivatives and benzoquinone crystals. , 2001, Chirality.

[50]  Tejender S. Thakur,et al.  Significant progress in predicting the crystal structures of small organic molecules--a report on the fourth blind test. , 2009, Acta crystallographica. Section B, Structural science.

[51]  N. Rodríguez-Hornedo,et al.  Screening strategies based on solubility and solution composition generate pharmaceutically acceptable cocrystals of carbamazepine , 2008 .

[52]  S. L. Johnson,et al.  Infrared Spectra of Solid 1:1 Pyridine-Benzoic Acid Complexes; the Nature of the Hydrogen Bond as a Function of the Acid-Base Levels in the Complex1 , 1965 .

[53]  L. Fábián,et al.  Exploring the relationship between cocrystal stability and symmetry: is Wallach's rule applicable to multi-component solids? , 2008, Chemical communications.

[54]  Kenneth I. Hardcastle,et al.  Cocrystals of Piroxicam with Carboxylic Acids , 2007 .

[55]  Geoff G. Z. Zhang,et al.  Efficient co-crystal screening using solution-mediated phase transformation. , 2007, Journal of pharmaceutical sciences.

[56]  Changquan Calvin Sun,et al.  Theophyl­line monohydrate , 2002 .

[57]  L. Reddy,et al.  Carboxamide-pyridine N-oxide heterosynthon for crystal engineering and pharmaceutical cocrystals. , 2006, Chemical communications.

[58]  T. Friščić,et al.  Supramolecular construction of molecular ladders in the solid state. , 2004, Angewandte Chemie.

[59]  Giannis S. Papaefstathiou,et al.  Supramolecular control of reactivity in the solid state: from templates to ladderanes to metal-organic frameworks. , 2008, Accounts of chemical research.

[60]  V. Lynch,et al.  Molecular Complexes of Homologous Alkanedicarboxylic Acids with Isonicotinamide: X-ray Crystal Structures, Hydrogen Bond Synthons, and Melting Point Alternation , 2003 .

[61]  M. Caira,et al.  Selective formation of hydrogen bonded cocrystals between a sulfonamide and aromatic carboxylic acids in the solid state , 1995 .

[62]  Ning Shan,et al.  The role of cocrystals in pharmaceutical science. , 2008, Drug discovery today.

[63]  T. Friščić,et al.  Screening for pharmaceutical cocrystal hydrates via neat and liquid-assisted grinding. , 2007, Molecular pharmaceutics.

[64]  A. Beatty,et al.  "Total Synthesis" Supramolecular Style: Design and Hydrogen-Bond-Directed Assembly of Ternary Supermolecules. , 2001, Angewandte Chemie.

[65]  P York,et al.  Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. , 2007, Advanced drug delivery reviews.

[66]  K. Gordon,et al.  Recent pharmaceutical applications of Raman and terahertz spectroscopies. , 2008, Journal of pharmaceutical sciences.

[67]  G. Day,et al.  Predicting stoichiometry and structure of solvates. , 2010, Chemical communications.

[68]  R. Kuroda,et al.  Generation of a co-crystal phase with novel coloristic properties via solid state grinding procedures. , 2002, Chemical communications.

[69]  T. Friščić,et al.  Modularity in Organic Solid State and Supramolecular Chemistry , 2006 .

[70]  A. Gavezzotti,et al.  Molecular recognition in organic crystals: directed intermolecular bonds or nonlocalized bonding? , 2005, Angewandte Chemie.

[71]  Chick C. Wilson,et al.  Controlling the formation of benzoic acid: isonicotinamide molecular complexes , 2009 .

[72]  L. Fábián,et al.  Powder X-ray diffraction as an emerging method to structurally characterize organic solids. , 2007, Organic letters.

[73]  K. Houk,et al.  The photoarrangement of alpha-santonin is a single-crystal-to-single-crystal reaction: a long kept secret in solid-state organic chemistry revealed. , 2007, Journal of the American Chemical Society.

[74]  D. Braga,et al.  Crystal Forms of the Antibiotic 4-Aminosalicylic Acid: Solvates and Molecular Salts with Dioxane, Morpholine, and Piperazine , 2009 .

[75]  Naír Rodríguez-Hornedo,et al.  Solubility Advantage of Pharmaceutical Cocrystals , 2009 .

[76]  R. Schartman On the thermodynamics of cocrystal formation. , 2009, International journal of pharmaceutics.

[77]  T. Friščić,et al.  Control and interconversion of cocrystal stoichiometry in grinding: stepwise mechanism for the formation of a hydrogen-bonded cocrystal , 2009 .

[78]  Niklas Sandler,et al.  Pharmaceutical co-crystals-an opportunity for drug product enhancement. , 2009, Expert opinion on drug delivery.

[79]  W. Motherwell,et al.  Physical stability enhancement of theophylline via cocrystallization. , 2006, International journal of pharmaceutics.

[80]  G. Day,et al.  Towards prediction of stoichiometry in crystalline multicomponent complexes. , 2008, Chemistry.

[81]  William Jones,et al.  Improving Mechanical Properties of Crystalline Solids by Cocrystal Formation: New Compressible Forms of Paracetamol , 2009 .

[82]  Geoff G. Z. Zhang,et al.  A "hidden" co-crystal of caffeine and adipic acid. , 2007, Chemical communications.

[83]  C. C. Seaton,et al.  Applying Hot-Stage Microscopy to Co-Crystal Screening: A Study of Nicotinamide with Seven Active Pharmaceutical Ingredients , 2008 .

[84]  S. Price The computational prediction of pharmaceutical crystal structures and polymorphism. , 2004, Advanced drug delivery reviews.

[85]  G. Day,et al.  The prediction, morphology, and mechanical properties of the polymorphs of paracetamol. , 2001, Journal of the American Chemical Society.

[86]  W. Jones,et al.  Mechanochemistry and co-crystal formation: effect of solvent on reaction kinetics. , 2002, Chemical communications.

[87]  A. Matzger,et al.  Polymorphism in Carbamazepine Cocrystals. , 2008, Crystal growth & design.

[88]  R. Kuroda,et al.  A new supramolecular system of racemic-bis-beta-naphthol, benzoquinone and aromatic hydrocarbon, which shows high molecular recognition ability. , 2002, Chemical communications.