Simple spinels: crystallographic parameters, cation radii, lattice energies, and cation distribution

The size of a cation is important in determining its site preference. In oxide spinels containing 2 (super +) and 3+) ions (2-3 spinels) there is a tendency for the larger ion to prefer the tetrahedral site; the reverse holds for 2-4 spinels. A set of cation radii optimized to best fit spinel lattice parameters is presented.--Modified journal abstract.

[1]  T. Mason,et al.  Thermopower Measurement of Cation Distribution in Magnetite , 1981 .

[2]  H. Bowen,et al.  Cation Distribution and Defect Chemistry of Iron‐Aluminate Spinels , 1981 .

[3]  E. Senderov On the theory of Al, Si ordering in albite , 1980 .

[4]  P. Tarte,et al.  Studies of spinels. VII. Order-disorder transition in the inverse germanate spinels Zn2−x(Co, Ni)xGeO4(x ⋍ 1) , 1980 .

[5]  R. J. Hill,et al.  Systematics of the spinel structure type , 1979 .

[6]  K. Subramanyam,et al.  The effect of heat treatment on the lattice parameter of nickel ferrite , 1979 .

[7]  P. Smith Note on the space group of spinel minerals , 1978 .

[8]  E. Grave,et al.  A mössbauer study of Ca2+‐containing magnetites , 1977 .

[9]  P. Thompson,et al.  Madelung calculations for the spinel structure , 1977 .

[10]  R. Dieckmann,et al.  Defects and Cation Diffusion in Magnetite (I) , 1977 .

[11]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[12]  F. Waldner,et al.  The inversion parameter with respect to the space group of MgAl2O4 spinels , 1976 .

[13]  R. G. Turner,et al.  The distribution of nickel ions among octahedral and tetrahedral sites in NiAl2O4MgAl2O4 solid solutions , 1974 .

[14]  M. Inagaki,et al.  Determination of cation distribution in spinels by X-ray diffraction method , 1973 .

[15]  C. Burnham,et al.  Electrostatic and repulsive energies of the M1 and M2 cation sites in pyroxenes , 1972 .

[16]  F. Waldner,et al.  A direct determination of cation disorder in MgAl2O4 spinel by ESR , 1972 .

[17]  B. Boucher,et al.  Etude cristallographique du manganite spinelle cubique NiMn2O4 par diffraction de neutrons , 1969 .

[18]  G. Sawatzky,et al.  Mössbauer Study of Several Ferrimagnetic Spinels , 1969 .

[19]  Alexandra Navrotsky,et al.  The thermodynamics of cation distributions in simple spinels , 1967 .

[20]  J. Robertson,et al.  The cation distribution in nickel ferrite , 1966 .

[21]  R. Mozzi,et al.  Cation Distributions in Nonstoichiometric Magnesium Ferrite , 1963 .

[22]  H. Schmalzried Röntgenographische Untersuchung der Kationenverteilung in Spinellphasen , 1961 .

[23]  T. Teranishi,et al.  Crystal Distortion in Copper Ferrite-Chromite Series , 1961 .

[24]  A. Paladino Phase Equilibria in the Ferrite Region of the System FeO‐MgO‐Fe2O3 , 1960 .

[25]  Arthur F. Miller Distribution of Cations in Spinels , 1959 .

[26]  B. Roiter,et al.  Phase Equilibria in the Ferrite Region of the System Fe—Co—O , 1959 .

[27]  D. Epstein,et al.  Some Properties of Quenched Magnesium Ferrites , 1958 .

[28]  H. Callen,et al.  Cation Distributions in Ferrospinels. Theoretical , 1956 .

[29]  S. E. Harrison,et al.  CATION DISTRIBUTIONS IN FERROSPINESL, II. MAGNESIUM-MANGANESE FERRITES, , 1956 .

[30]  S. Pickart,et al.  Cation Distribution and g Factors of Certain Spinels Containing Ni++, Mn++, Co++, Al+++, Ga+++, and Fe+++ , 1954 .

[31]  R. Pauthenet,et al.  Aimantation spontanée des ferrites , 1951 .

[32]  E. Verwey,et al.  Cation Arrangement in Spinels , 1948 .

[33]  T. Barth,et al.  Spinel structures: with and without variate atom equipoints , 1932 .

[34]  B. Wood Crystal Field Electronic Effects on the Thermodynamic Properties of Fe2+ Minerals , 1981 .

[35]  I. Suzuki,et al.  Anomalous Thermal Expansion in Spinel MgAI204 A Possibility for a Second Order Phase Transition , 1980 .

[36]  A. Navrotsky Calculation of effect of cation disorder on silicate spinel phase boundaries , 1977 .

[37]  K. Jacob,et al.  Activities and their relation to cation distribution in NiAl2O4 MgAl2O4 spinel solid solutions , 1977 .

[38]  C. Glidewell Cation distribution in spinels: Lattice energy versus crystals field stabilisation energy , 1976 .

[39]  K. Jacob,et al.  Evidence of residual entropy in the cubic spinel Zn 2 TiO 4 , 1975 .

[40]  W. Gool,et al.  Electrostatic Energy of Cubic Spinel Structures , 1974 .

[41]  B. Jerslev Effective Ionic Radii in Oxides and Fluorides* , 1969 .

[42]  C. Schneider Berichte der Bunsengesellschaft für Physikalische Chemie , 1967 .

[43]  M. P. Tosi,et al.  Cohesion of Ionic Solids in the Born Model , 1964 .

[44]  D. McClure,et al.  The distribution of transition metal cations in spinels , 1957 .

[45]  L. Orgel,et al.  Electronic properties of transition-metal oxides-II: Cation distribution amongst octahedral and tetrahedral sites , 1957 .