Accurate and Computationally Efficient Tensor-Based Subspace Approach for Multidimensional Harmonic Retrieval

In this paper, parameter estimation for R-dimensional (R -D) sinusoids with R >; 2 in additive white Gaussian noise is addressed. With the use of tensor algebra and principal-singular-vector utilization for modal analysis, the sinusoidal parameters at one dimension are first accurately estimated according to an iterative procedure which utilizes the linear prediction property and weighted least squares. The damping factors and frequencies in the remaining dimensions are then solved such that pairing of the R-D parameters is automatically achieved. Algorithm modification for a single R -D tone is made and it is proved that the frequency estimates are asymptotically unbiased while their variances approach Cramér-Rao lower bound at sufficiently high signal-to-noise ratio conditions. Computer simulations are also included to compare the proposed approach with conventional R -D harmonic retrieval schemes in terms of mean square error performance and computational complexity.

[1]  VandewalleJoos,et al.  On the Best Rank-1 and Rank-(R1,R2,. . .,RN) Approximation of Higher-Order Tensors , 2000 .

[2]  Bin Zhou,et al.  Maximum likelihood estimation of 2-D superimposed exponential signals , 1994, IEEE Trans. Signal Process..

[3]  Tao Jiang,et al.  Multidimensional Harmonic Retrieval with Applications in MIMO Wireless Channel Sounding , 2005 .

[4]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[5]  Robert Boorstyn,et al.  Single tone parameter estimation from discrete-time observations , 1974, IEEE Trans. Inf. Theory.

[6]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[7]  James H. McClellan,et al.  Exact equivalence of the Steiglitz-McBride iteration and IQML , 1991, IEEE Trans. Signal Process..

[8]  T. Söderström,et al.  The Steiglitz-McBride identification algorithm revisited--Convergence analysis and accuracy aspects , 1981 .

[9]  Arogyaswami Paulraj,et al.  Joint angle and delay estimation using shift-invariance techniques , 1998, IEEE Trans. Signal Process..

[10]  Nikos D. Sidiropoulos,et al.  Almost sure identifiability of constant modulus multidimensional harmonic retrieval , 2002, IEEE Trans. Signal Process..

[11]  L. Lathauwer,et al.  On the Best Rank-1 and Rank-( , 2004 .

[12]  Frankie K. W. Chan,et al.  An Efficient Approach for Two-Dimensional Parameter Estimation of a Single-Tone , 2010, IEEE Transactions on Signal Processing.

[13]  Xiaoli Ma,et al.  First-Order Perturbation Analysis of Singular Vectors in Singular Value Decomposition , 2007 .

[14]  Nikos D. Sidiropoulos,et al.  Almost sure identifiability of multidimensional harmonic retrieval , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[15]  Louis L. Scharf,et al.  Two-dimensional modal analysis based on maximum likelihood , 1994, IEEE Trans. Signal Process..

[16]  K. J. Liu,et al.  A high-resolution technique for multidimensional NMR spectroscopy , 1998, IEEE Transactions on Biomedical Engineering.

[17]  Sabine Van Huffel,et al.  Exponential data fitting using multilinear algebra: the single‐channel and multi‐channel case , 2005, Numer. Linear Algebra Appl..

[18]  Weize Sun,et al.  Improvement to esprit-type frequency estimators via reducing data redundancy , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[19]  Nikos D. Sidiropoulos,et al.  Tensor Algebra and Multidimensional Harmonic Retrieval in Signal Processing for MIMO Radar , 2010, IEEE Transactions on Signal Processing.

[20]  Josef A. Nossek,et al.  Unitary ESPRIT: how to obtain increased estimation accuracy with a reduced computational burden , 1995, IEEE Trans. Signal Process..

[21]  Frankie K. W. Chan,et al.  A generalized weighted linear predictor frequency estimation approach for a complex sinusoid , 2006, IEEE Transactions on Signal Processing.

[22]  Nikos D. Sidiropoulos,et al.  Generalizing Carathéodory's uniqueness of harmonic parameterization to N dimensions , 2001, IEEE Trans. Inf. Theory.

[23]  Jun Liu,et al.  An Eigenvector-Based Approach for Multidimensional Frequency Estimation With Improved Identifiability , 2006, IEEE Transactions on Signal Processing.

[24]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[25]  Josef A. Nossek,et al.  Simultaneous Schur decomposition of several nonsymmetric matrices to achieve automatic pairing in multidimensional harmonic retrieval problems , 1998, IEEE Trans. Signal Process..

[26]  David E. Booth,et al.  Multi-Way Analysis: Applications in the Chemical Sciences , 2005, Technometrics.

[27]  Xiaoli Ma,et al.  First-Order Perturbation Analysis of Singular Vectors in Singular Value Decomposition , 2007, 2007 IEEE/SP 14th Workshop on Statistical Signal Processing.

[28]  Frankie K. W. Chan,et al.  Efficient Approach for Sinusoidal Frequency Estimation of Gapped Data , 2010, IEEE Signal Processing Letters.

[29]  Martin Haardt,et al.  Single Snapshot R-D Unitary Tensor-ESPRIT Using an Augmentation of the Tensor Order , 2009, 2009 3rd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[30]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[31]  Sudhakar M. Pandit,et al.  Variance of least squares estimators for a damped sinusoidal process , 1994, IEEE Trans. Signal Process..

[32]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[33]  Rasmus Bro,et al.  Multi-way Analysis with Applications in the Chemical Sciences , 2004 .

[34]  Jian Li,et al.  Comparative study of IQML and MODE direction-of-arrival estimators , 1998, IEEE Trans. Signal Process..

[35]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[36]  Florian Roemer,et al.  Higher-Order SVD-Based Subspace Estimation to Improve the Parameter Estimation Accuracy in Multidimensional Harmonic Retrieval Problems , 2008, IEEE Transactions on Signal Processing.