Accurate and Computationally Efficient Tensor-Based Subspace Approach for Multidimensional Harmonic Retrieval
暂无分享,去创建一个
[1] VandewalleJoos,et al. On the Best Rank-1 and Rank-(R1,R2,. . .,RN) Approximation of Higher-Order Tensors , 2000 .
[2] Bin Zhou,et al. Maximum likelihood estimation of 2-D superimposed exponential signals , 1994, IEEE Trans. Signal Process..
[3] Tao Jiang,et al. Multidimensional Harmonic Retrieval with Applications in MIMO Wireless Channel Sounding , 2005 .
[4] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[5] Robert Boorstyn,et al. Single tone parameter estimation from discrete-time observations , 1974, IEEE Trans. Inf. Theory.
[6] S. Kay. Fundamentals of statistical signal processing: estimation theory , 1993 .
[7] James H. McClellan,et al. Exact equivalence of the Steiglitz-McBride iteration and IQML , 1991, IEEE Trans. Signal Process..
[8] T. Söderström,et al. The Steiglitz-McBride identification algorithm revisited--Convergence analysis and accuracy aspects , 1981 .
[9] Arogyaswami Paulraj,et al. Joint angle and delay estimation using shift-invariance techniques , 1998, IEEE Trans. Signal Process..
[10] Nikos D. Sidiropoulos,et al. Almost sure identifiability of constant modulus multidimensional harmonic retrieval , 2002, IEEE Trans. Signal Process..
[11] L. Lathauwer,et al. On the Best Rank-1 and Rank-( , 2004 .
[12] Frankie K. W. Chan,et al. An Efficient Approach for Two-Dimensional Parameter Estimation of a Single-Tone , 2010, IEEE Transactions on Signal Processing.
[13] Xiaoli Ma,et al. First-Order Perturbation Analysis of Singular Vectors in Singular Value Decomposition , 2007 .
[14] Nikos D. Sidiropoulos,et al. Almost sure identifiability of multidimensional harmonic retrieval , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).
[15] Louis L. Scharf,et al. Two-dimensional modal analysis based on maximum likelihood , 1994, IEEE Trans. Signal Process..
[16] K. J. Liu,et al. A high-resolution technique for multidimensional NMR spectroscopy , 1998, IEEE Transactions on Biomedical Engineering.
[17] Sabine Van Huffel,et al. Exponential data fitting using multilinear algebra: the single‐channel and multi‐channel case , 2005, Numer. Linear Algebra Appl..
[18] Weize Sun,et al. Improvement to esprit-type frequency estimators via reducing data redundancy , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[19] Nikos D. Sidiropoulos,et al. Tensor Algebra and Multidimensional Harmonic Retrieval in Signal Processing for MIMO Radar , 2010, IEEE Transactions on Signal Processing.
[20] Josef A. Nossek,et al. Unitary ESPRIT: how to obtain increased estimation accuracy with a reduced computational burden , 1995, IEEE Trans. Signal Process..
[21] Frankie K. W. Chan,et al. A generalized weighted linear predictor frequency estimation approach for a complex sinusoid , 2006, IEEE Transactions on Signal Processing.
[22] Nikos D. Sidiropoulos,et al. Generalizing Carathéodory's uniqueness of harmonic parameterization to N dimensions , 2001, IEEE Trans. Inf. Theory.
[23] Jun Liu,et al. An Eigenvector-Based Approach for Multidimensional Frequency Estimation With Improved Identifiability , 2006, IEEE Transactions on Signal Processing.
[24] Joos Vandewalle,et al. On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..
[25] Josef A. Nossek,et al. Simultaneous Schur decomposition of several nonsymmetric matrices to achieve automatic pairing in multidimensional harmonic retrieval problems , 1998, IEEE Trans. Signal Process..
[26] David E. Booth,et al. Multi-Way Analysis: Applications in the Chemical Sciences , 2005, Technometrics.
[27] Xiaoli Ma,et al. First-Order Perturbation Analysis of Singular Vectors in Singular Value Decomposition , 2007, 2007 IEEE/SP 14th Workshop on Statistical Signal Processing.
[28] Frankie K. W. Chan,et al. Efficient Approach for Sinusoidal Frequency Estimation of Gapped Data , 2010, IEEE Signal Processing Letters.
[29] Martin Haardt,et al. Single Snapshot R-D Unitary Tensor-ESPRIT Using an Augmentation of the Tensor Order , 2009, 2009 3rd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).
[30] Petre Stoica,et al. Spectral Analysis of Signals , 2009 .
[31] Sudhakar M. Pandit,et al. Variance of least squares estimators for a damped sinusoidal process , 1994, IEEE Trans. Signal Process..
[32] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[33] Rasmus Bro,et al. Multi-way Analysis with Applications in the Chemical Sciences , 2004 .
[34] Jian Li,et al. Comparative study of IQML and MODE direction-of-arrival estimators , 1998, IEEE Trans. Signal Process..
[35] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[36] Florian Roemer,et al. Higher-Order SVD-Based Subspace Estimation to Improve the Parameter Estimation Accuracy in Multidimensional Harmonic Retrieval Problems , 2008, IEEE Transactions on Signal Processing.