A DATA FLOW IMPLEMENTATION OF AGENT-BASED DISTRIBUTED GRAPH SEARCH | NIST

Biological ants organize themselves into forager groups that converge to shortest paths to and from food sources. This has motivated development a large class of biologically inspired agent-based graph search techniques, called Ant Colony Optimization, to solve diverse combinatorial problems. Our approach to parallel graph search uses multiple ant agent populations distributed across processors and clustered computers to solve large-scale graph search problems. We discuss our implementation using the NIST Data Flow System II, and show good scalability of our parallel search algorithm.

[1]  P.-P. Grasse La reconstruction du nid et les coordinations interindividuelles chezBellicositermes natalensis etCubitermes sp. la théorie de la stigmergie: Essai d'interprétation du comportement des termites constructeurs , 1959, Insectes Sociaux.

[2]  Vincent M. Stanford,et al.  Synchronization of data streams in distributed realtime multimodal signal processing environments using commodity hardware , 2008, 2008 IEEE International Conference on Multimedia and Expo.

[3]  E.-G. Talbia,et al.  Parallel Ant Colonies for the quadratic assignment problem , 2001, Future Gener. Comput. Syst..

[4]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[5]  Martial Michel,et al.  Network Transfer of Control Data: An Application of the NIST SMART DATA FLOW , 2003 .

[6]  Marco Dorigo,et al.  Ant algorithms and stigmergy , 2000, Future Gener. Comput. Syst..

[7]  Haroldo F. de Campos Velho,et al.  Reconstruction of Chlorophyll Concentration Profile in Offshore Ocean Water using a Parallel Ant Colony Code , 2004, Hybrid Metaheuristics.

[8]  Gabriele Kotsis,et al.  Parallelization strategies for the ant system , 1998 .

[9]  Thomas Stützle,et al.  Ant Colony Optimization Theory , 2004 .

[10]  Martial Michel,et al.  The NIST Smart Space and Meeting Room projects: signals, acquisition annotation, and metrics , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[11]  D. Sumpter,et al.  Phase transition between disordered and ordered foraging in Pharaoh's ants , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Sean Luke,et al.  MASON: A New Multi-Agent Simulation Toolkit , 2004 .

[13]  Jonathan G. Fiscus,et al.  Middleware and Metrology for the Pervasive Future , 2009, IEEE Pervasive Computing.

[14]  S. Pratt,et al.  A modelling framework for understanding social insect foraging , 2003, Behavioral Ecology and Sociobiology.

[15]  Marc Gravel,et al.  PARALLEL IMPLEMENTATION OF AN ANT COLONY OPTIMIZATION METAHEURISTIC WITH OPENMP , 2001 .

[16]  Thomas Stützle,et al.  A short convergence proof for a class of ant colony optimization algorithms , 2002, IEEE Trans. Evol. Comput..