A fast algorithm for computing multidimensional DCT on certain small sizes

This paper presents a new algorithm for the fast computation of multidimensional (m-D) discrete cosine transform (DCT) with size N/sub 1//spl times/N/sub 2//spl times//spl middot//spl middot//spl middot//spl times/N/sub m/, where N/sub i/ is a power of 2 and N/sub i//spl les/256, by using the tensor product decomposition of the transform matrix. It is shown that the m-D DCT or inverse discrete cosine transform (IDCT) on these small sizes can be computed using only one-dimensional (1-D) DCTs and additions and shifts. If all the dimensional sizes are the same, the total number of multiplications required for the algorithm is only 1/m times of that required for the conventional row-column method. We also introduce approaches for computing scaled DCTs in which the number of multiplications is considerably reduced.

[1]  Yui-Lam Chan,et al.  Variable temporal-length 3-D discrete cosine transform coding , 1997, IEEE Trans. Image Process..

[2]  Cairong Zou,et al.  A generalized fast algorithm for n-D discrete cosine transform and its application to motion picture coding , 1999 .

[3]  N. Ahmed,et al.  Discrete Cosine Transform , 1996 .

[4]  MUNSI ALAUL HAQUE,et al.  A two-dimensional fast cosine transform , 1985, IEEE Trans. Acoust. Speech Signal Process..

[5]  E. Feig,et al.  On the multiplicative complexity of discrete cosine transforms , 1992, IEEE Trans. Inf. Theory.

[6]  N. Cho,et al.  Fast algorithm and implementation of 2-D discrete cosine transform , 1991 .

[7]  Hussein M. Alnuweiri,et al.  A new multidimensional recursive architecture for computing the discrete cosine transform , 2000, IEEE Trans. Circuits Syst. Video Technol..

[8]  M. J. Narasimha,et al.  On the Computation of the Discrete Cosine Transform , 1978, IEEE Trans. Commun..

[9]  Hsieh S. Hou A fast recursive algorithm for computing the discrete cosine transform , 1987, IEEE Trans. Acoust. Speech Signal Process..

[10]  B. Lee A new algorithm to compute the discrete cosine Transform , 1984 .

[11]  Pierre Duhamel,et al.  Polynomial transform computation of the 2-D DCT , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[12]  Hsieh Hou,et al.  A Fast Recursive Algorithm For Computing The Discrete Cosine Transform , 1986, Optics & Photonics.

[13]  Ephraim Feig,et al.  Fast algorithms for the discrete cosine transform , 1992, IEEE Trans. Signal Process..

[14]  Martin Vetterli,et al.  Fast 2-D discrete cosine transform , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[15]  Chingwo Ma,et al.  A Fast Recursive Two Dimensional Cosine Transform , 1989, Other Conferences.

[16]  R. Clarke,et al.  Relation between the Karhunen Loève and cosine transforms , 1981 .

[17]  Yonghong Zeng,et al.  New polynomial transform algorithm for multidimensional DCT , 2000, IEEE Trans. Signal Process..

[18]  Nam Ik Cho,et al.  A fast 4×4 DCT algorithm for the recursive 2-D DCT , 1992, IEEE Trans. Signal Process..