In situ single particle classification reveals distinct 60 S maturation 1 intermediates in cells 2 3

[1]  A. Korostelev The Structural Dynamics of Translation. , 2022, Annual review of biochemistry.

[2]  P. Bork,et al.  Visualizing translation dynamics at atomic detail inside a bacterial cell , 2021, bioRxiv.

[3]  Philipp S. Erdmann,et al.  In situ cryo-electron tomography reveals gradient organization of ribosome biogenesis in intact nucleoli , 2021, Nature Communications.

[4]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[5]  Benjamin A. Himes,et al.  Locating macromolecular assemblies in cells by 2D template matching with cisTEM , 2021, bioRxiv.

[6]  Benjamin A. Himes,et al.  Cryo-TEM simulations of amorphous radiation-sensitive samples using multislice wave propagation , 2021, bioRxiv.

[7]  Daisuke Kihara,et al.  SHREC 2020: Classification in cryo-electron tomograms , 2020, Comput. Graph..

[8]  Conrad C. Huang,et al.  UCSF ChimeraX: Structure visualization for researchers, educators, and developers , 2020, Protein science : a publication of the Protein Society.

[9]  D. Tegunov,et al.  Multi-particle cryo-EM refinement with M visualizes ribosome-antibiotic complex at 3.5 Å in cells , 2020, Nature Methods.

[10]  W. Denk,et al.  Label-free single-instance protein detection in vitrified cells , 2020, bioRxiv.

[11]  José María Carazo,et al.  Measurement of local resolution in electron tomography , 2019, Journal of structural biology: X.

[12]  Christopher J. Williams,et al.  Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix , 2019, Acta crystallographica. Section D, Structural biology.

[13]  W. Baumeister,et al.  A cryo-FIB lift-out technique enables molecular-resolution cryo-ET within native Caenorhabditis elegans tissue , 2019, Nature Methods.

[14]  T. Becker,et al.  Structure of the 80S ribosome–Xrn1 nuclease complex , 2019, Nature Structural & Molecular Biology.

[15]  J. Dauxois,et al.  The path of pre-ribosomes through the nuclear pore complex revealed by electron tomography , 2019, Nature Communications.

[16]  Benjamin A Himes,et al.  emClarity: Software for High Resolution Cryo-electron Tomography and Sub-tomogram Averaging , 2018, Nature Methods.

[17]  Arlen W. Johnson,et al.  Tightly-orchestrated rearrangements govern catalytic center assembly of the ribosome , 2018, Nature Communications.

[18]  Benjamin A. Himes,et al.  emClarity: Software for High Resolution Cryo-electron Tomography and Sub-tomogram Averaging , 2018, Nature Methods.

[19]  Alexis Rohou,et al.  cisTEM: User-friendly software for single-particle image processing , 2017, bioRxiv.

[20]  Martyn Winn,et al.  Recent developments in the CCP-EM software suite , 2017, Acta crystallographica. Section D, Structural biology.

[21]  W. Denk,et al.  Single-protein detection in crowded molecular environments in cryo-EM images , 2017, eLife.

[22]  J. Briggs,et al.  An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation , 2016, Science.

[23]  M. Dong,et al.  Diverse roles of assembly factors revealed by structures of late nuclear pre-60S ribosomes , 2016, Nature.

[24]  A. Hyman,et al.  Visualizing the molecular sociology at the HeLa cell nuclear periphery , 2016, Science.

[25]  N. Grigorieff,et al.  CTFFIND4: Fast and accurate defocus estimation from electron micrographs , 2015, bioRxiv.

[26]  Christoph Leidig,et al.  60S ribosome biogenesis requires rotation of the 5S ribonucleoprotein particle , 2014, Nature Communications.

[27]  D. Tollervey,et al.  Coupled GTPase and remodeling ATPase activities form a checkpoint for ribosome export , 2013, Nature.

[28]  W. Baumeister,et al.  Opening windows into the cell: focused-ion-beam milling for cryo-electron tomography. , 2013, Current opinion in structural biology.

[29]  Felix J. B. Bäuerlein,et al.  Opening Windows into the Cell: Focused Ion Beam Micromachining of Eukaryotic Cells for Cryo-Electron Tomography , 2013 .

[30]  Felix J. B. Bäuerlein,et al.  Focused ion beam micromachining of eukaryotic cells for cryoelectron tomography , 2012, Proceedings of the National Academy of Sciences.

[31]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[32]  I. J. van der Klei,et al.  Cytoplasmic Recycling of 60S Preribosomal Factors Depends on the AAA Protein Drg1 , 2007, Molecular and Cellular Biology.

[33]  Conrad C. Huang,et al.  Tools for integrated sequence-structure analysis with UCSF Chimera , 2006, BMC Bioinformatics.

[34]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[35]  Achilleas S. Frangakis,et al.  Cryo-Electron Tomography Reveals the Cytoskeletal Structure of Spiroplasma melliferum , 2005, Science.

[36]  R. Henderson,et al.  Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. , 2003, Journal of molecular biology.

[37]  Arlen W. Johnson,et al.  Nmd3p Is a Crm1p-Dependent Adapter Protein for Nuclear Export of the Large Ribosomal Subunit , 2000, The Journal of cell biology.

[38]  N Grigorieff,et al.  Resolution measurement in structures derived from single particles. , 2000, Acta crystallographica. Section D, Biological crystallography.

[39]  J. Warner,et al.  The economics of ribosome biosynthesis in yeast. , 1999, Trends in biochemical sciences.

[40]  M. Rosbash,et al.  The NES–Crm1p export pathway is not a major mRNA export route in Saccharomyces cerevisiae , 1999, The EMBO journal.

[41]  V. Lučić,et al.  Cryo-electron tomography: The challenge of doing structural biology in situ , 2013, The Journal of cell biology.

[42]  Robert N. McDonough,et al.  Detection of signals in noise , 1971 .

[43]  T. Haar A quantitative estimation of the global translational activity in logarithmically growing yeast cells , 2022 .