Degradation of p53 can be targeted by HPV E6 sequences distinct from those required for p53 binding and trans-activation

[1]  T. Crook,et al.  Status of c-myc, p53 and retinoblastoma genes in human papillomavirus positive and negative squamous cell carcinomas of the anus. , 1991, Oncogene.

[2]  K. Münger,et al.  The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[3]  T. Crook,et al.  p53 point mutation in HPV negative human cervical carcinoma cell lines. , 1991, Oncogene.

[4]  A. Murray,et al.  Cyclin is degraded by the ubiquitin pathway , 1991, Nature.

[5]  D. Lowy,et al.  In vitro biological activities of the E6 and E7 genes vary among human papillomaviruses of different oncogenic potential , 1991, Journal of virology.

[6]  A Ciechanover,et al.  Degradation of nuclear oncoproteins by the ubiquitin system in vitro. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Arnold J. Levine,et al.  The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53 , 1990, Cell.

[8]  M. Green,et al.  Chemical synthesis of human papillomavirus type 16 E7 oncoprotein: autonomous protein domains for induction of cellular DNA synthesis and for trans activation , 1990, Journal of virology.

[9]  K. Vousden Human papillomavirus oncoproteins. , 1990, Seminars in cancer biology.

[10]  B. Vogelstein,et al.  p53 functions as a cell cycle control protein in osteosarcomas , 1990, Molecular and cellular biology.

[11]  S. Fields,et al.  Presence of a potent transcription activating sequence in the p53 protein. , 1990, Science.

[12]  G. Lozano,et al.  Transcriptional activation by wild-type but not transforming mutants of the p53 anti-oncogene. , 1990, Science.

[13]  B. Vogelstein,et al.  Suppression of human colorectal carcinoma cell growth by wild-type p53. , 1990, Science.

[14]  E. Appella,et al.  Negative growth regulation in a glioblastoma tumor cell line that conditionally expresses human wild-type p53. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[15]  E. Androphy,et al.  Transcriptional activation by the papillomavirus E6 zinc finger oncoprotein. , 1990, The EMBO journal.

[16]  A. Levine,et al.  Association of human papillomavirus types 16 and 18 E6 proteins with p53. , 1990, Science.

[17]  D. Lowy,et al.  The region of the HPV E7 oncoprotein homologous to adenovirus E1a and Sv40 large T antigen contains separate domains for Rb binding and casein kinase II phosphorylation. , 1990, The EMBO journal.

[18]  D. Lowy,et al.  HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. , 1989, The EMBO journal.

[19]  K. Münger,et al.  Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. , 1989, The EMBO journal.

[20]  E. Villiers Heterogeneity of the human papillomavirus group. , 1989 .

[21]  V. Kh,et al.  Human papillomaviruses and cervical carcinoma. , 1989 .

[22]  R. Schlegel,et al.  The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes , 1989, Journal of virology.

[23]  A. Levine,et al.  The p53 proto-oncogene can act as a suppressor of transformation , 1989, Cell.

[24]  K. Vousden,et al.  A point mutational analysis of human papillomavirus type 16 E7 protein , 1989, Journal of virology.

[25]  D. Lowy,et al.  Papillomavirus polypeptides E6 and E7 are zinc-binding proteins , 1989, Journal of virology.

[26]  S. Grossman,et al.  Identification of human papillomavirus type 18 transforming genes in immortalized and primary cells , 1989, Journal of virology.

[27]  K. Münger,et al.  The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. , 1989, Science.

[28]  C. Woodworth,et al.  Immortalization of human foreskin keratinocytes by various human papillomavirus DNAs corresponds to their association with cervical carcinoma , 1989, Journal of virology.

[29]  P. L. Chen,et al.  Suppression of the neoplastic phenotype by replacement of the RB gene in human cancer cells. , 1988, Science.

[30]  D. Lowy,et al.  The E7 open reading frame of human papillomavirus type 16 encodes a transforming gene. , 1988, Oncogene research.

[31]  Wen-Hwa Lee,et al.  SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene , 1988, Cell.

[32]  Stephen H. Friend,et al.  Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product , 1988, Nature.

[33]  D. Pim,et al.  Comparison of the in vitro transforming activities of human papillomavirus types. , 1988, The EMBO journal.

[34]  K. Münger,et al.  The human papillomavirus type 16 E7 gene encodes transactivation and transformation functions similar to those of adenovirus E1A , 1988, Cell.

[35]  J. Trowsdale,et al.  Analysis of HLA-DR glycoproteins by DNA-mediated gene transfer. Definition of DR2 beta gene products and antigen presentation to T cell clones from leprosy patients , 1988, The Journal of experimental medicine.

[36]  S. Grossman,et al.  Inducible and constitutive enhancer domains in the noncoding region of human papillomavirus type 18 , 1988, Journal of virology.

[37]  T. Kanda,et al.  Human papillomavirus type 16 open reading frame E7 encodes a transforming gene for rat 3Y1 cells , 1988, Journal of virology.

[38]  D. Pim,et al.  Primary structure polymorphism at amino acid residue 72 of human p53 , 1987, Molecular and cellular biology.

[39]  L. Banks,et al.  Isolation of human-p53-specific monoclonal antibodies and their use in the studies of human p53 expression. , 1986, European journal of biochemistry.

[40]  A. Schneider-Gädicke,et al.  Different human cervical carcinoma cell lines show similar transcription patterns of human papillomavirus type 18 early genes. , 1986, The EMBO journal.

[41]  J. Yewdell,et al.  Monoclonal antibody analysis of p53 expression in normal and transformed cells , 1986, Journal of virology.

[42]  F. Wettstein,et al.  Transcription of human papillomavirus type 16 early genes in a cervical cancer and a cancer-derived cell line and identification of the E7 protein. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[43]  A. Faras,et al.  The nucleotide sequence and genome organization of human papilloma virus type 11. , 1986 .

[44]  L. Gissmann,et al.  The nucleotide sequence and genome organization of human papilloma virus type 11. , 1986, Virology.

[45]  D. Hazuda,et al.  Xenopus transcription factor A requires zinc for binding to the 5 S RNA gene. , 1983, The Journal of biological chemistry.

[46]  M. Dürst,et al.  DNA sequence and genome organization of genital human papillomavirus type 6b. , 1983, The EMBO journal.

[47]  G. Ringold,et al.  Expression and regulation of Escherichia coli lacZ gene fusions in mammalian cells. , 1983, Journal of molecular and applied genetics.

[48]  B. Howard,et al.  Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells , 1982, Molecular and cellular biology.

[49]  A. Levine,et al.  Adenovirus E1b-58kd tumor antigen and SV40 large tumor antigen are physically associated with the same 54 kd cellular protein in transformed cells , 1982, Cell.

[50]  D. Pim,et al.  Monoclonal antibodies specific for simian virus 40 tumor antigens , 1981, Journal of virology.

[51]  D. Lane,et al.  T antigen is bound to a host protein in SY40-transformed cells , 1979, Nature.

[52]  Jeffrey H. Miller Experiments in molecular genetics , 1972 .