Totally Destructive Many-Particle Interference.

In a general, multimode scattering setup, we show how the permutation symmetry of a many-particle input state determines those scattering unitaries that exhibit strictly suppressed many-particle transition events. We formulate purely algebraic suppression laws that identify these events and show that the many-particle interference at their origin is robust under weak disorder and imperfect indistinguishability of the interfering particles. Finally, we demonstrate that all suppression laws so far described in the literature are embedded in the general framework that we here introduce.

[1]  Gregor Weihs,et al.  Totally destructive interference for permutation-symmetric many-particle states , 2018, Physical Review A.

[2]  K. Mølmer,et al.  Extending exchange symmetry beyond bosons and fermions , 2017 .

[3]  Peter P Rohde,et al.  Multiphoton Interference in Quantum Fourier Transform Circuits and Applications to Quantum Metrology. , 2017, Physical review letters.

[4]  Fabio Sciarrino,et al.  Experimental generalized quantum suppression law in Sylvester interferometers , 2017, 1705.08650.

[5]  Nicolò Spagnolo,et al.  Learning an unknown transformation via a genetic approach , 2016, Scientific Reports.

[6]  B. J. Metcalf,et al.  Distinguishability and Many-Particle Interference. , 2016, Physical review letters.

[7]  Gregor Weihs,et al.  Many-body quantum interference on hypercubes , 2016, 1607.00836.

[8]  Nicolò Spagnolo,et al.  Suppression law of quantum states in a 3D photonic fast Fourier transform chip , 2016, Nature Communications.

[9]  Philip Walther,et al.  On unitary reconstruction of linear optical networks , 2015, 1512.04769.

[10]  S. Oppel,et al.  Hong–Ou–Mandel interference without beam splitters , 2015, 1508.01639.

[11]  Stefan Nolte,et al.  Implementation of quantum and classical discrete fractional Fourier transforms , 2015, Nature Communications.

[12]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[13]  Andrea Crespi,et al.  Suppression laws for multiparticle interference in Sylvester interferometers , 2015, 1502.06372.

[14]  A. Aspect,et al.  Atomic Hong–Ou–Mandel experiment , 2014, Nature.

[15]  M. Tichy Sampling of partially distinguishable bosons and the relation to the multidimensional permanent , 2014, 1410.7687.

[16]  V. Shchesnovich,et al.  Partial indistinguishability theory for multiphoton experiments in multiport devices , 2014, 1410.1506.

[17]  M. Foss-Feig,et al.  Two-particle quantum interference in tunnel-coupled optical tweezers , 2014, Science.

[18]  Barry C. Sanders,et al.  Generalized Multiphoton Quantum Interference , 2014, 1403.3433.

[19]  B. Sanders,et al.  Coincidence landscapes for three-channel linear optical networks , 2014, 1402.2391.

[20]  Malte C. Tichy,et al.  Interference of identical particles from entanglement to boson-sampling , 2013, 1312.4266.

[21]  Andreas Buchleitner,et al.  Stringent and efficient assessment of boson-sampling devices. , 2013, Physical review letters.

[22]  Valery Shchesnovich,et al.  Sufficient condition for the mode mismatch of single photons for scalability of the boson-sampling computer , 2013, 1311.6796.

[23]  Nicolò Spagnolo,et al.  Three-photon bosonic coalescence in an integrated tritter , 2012, Nature Communications.

[24]  Andrew G. White,et al.  Direct characterization of linear-optical networks. , 2012, Optics express.

[25]  G. Marshall,et al.  Non-classical interference in integrated 3D multiports. , 2012, Optics express.

[26]  Stefan Nolte,et al.  Coherent quantum transport in photonic lattices , 2012, 1207.6080.

[27]  Markus Tiersch,et al.  Many-particle interference beyond many-boson and many-fermion statistics , 2012, 1204.5588.

[28]  Andreas Buchleitner,et al.  Counting statistics of many-particle quantum walks , 2010, 1009.5241.

[29]  Markus Tiersch,et al.  Zero-transmission law for multiport beam splitters. , 2010, Physical review letters.

[30]  G. Guo,et al.  Observation of a generalized bunching effect of six photons. , 2009, Optics letters.

[31]  J. O'Brien Optical Quantum Computing , 2007, Science.

[32]  V. Scarani,et al.  Entangling independent photons by time measurement , 2007, 0704.0758.

[33]  Y. F. Huang,et al.  Demonstration of temporal distinguishability in a four-photon state and a six-photon state. , 2006, Physical review letters.

[34]  Yuan Liang Lim,et al.  Generalized Hong–Ou–Mandel experiments with bosons and fermions , 2005, quant-ph/0505034.

[35]  Jian-Wei Pan,et al.  De Broglie wavelength of a non-local four-photon state , 2003, Nature.

[36]  Andreas Renz,et al.  Observation of Hanbury Brown–Twiss anticorrelations for free electrons , 2002, Nature.

[37]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[38]  Richard A. Campos,et al.  Three-photon Hong-Ou-Mandel interference at a multiport mixer , 2000 .

[39]  Lipo Wang,et al.  Observation of Four-Photon Interference with a Beam Splitter by Pulsed Parametric Down-Conversion , 1999 .

[40]  R. Loudon FERMION AND BOSON BEAM-SPLITTER STATISTICS , 1998 .

[41]  S. Tarucha,et al.  Quantum interference in electron collision , 1998, Nature.

[42]  Weinfurter,et al.  Two-photon interference in optical fiber multiports. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[43]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[44]  Shih,et al.  New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion. , 1988, Physical review letters.

[45]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[46]  Anton Zeilinger,et al.  General properties of lossless beam splitters in interferometry , 1981 .

[47]  NOBEL LECTURES , 1968 .

[48]  W. Marsden I and J , 2012 .