Automatic Detection of Object of Interest and Tracking in Active Video

We propose a novel method for automatic detection of Object of Interest (OOI) and tracking from actively acquired videos. The proposed approach benefits the object-centered property of Active Video and facilitates self-initialization in tracking by a non-calibrated camera. We first use a color-saliency weighted Probability-of-Boundary (cPoB) map for keypoints filtering and salient region detection. Successive Classification Maximum Similarities (SCMS) feature matching is used for tracking between two consecutive frames. A strong classifier trained on-the-fly by AdaBoost is utilized for keypoint classification and subsequent Linear Programming rejects outliers. Experiments demonstrate the importance of active video during the data collection phase and confirm that our new approach can automatically detect and reliably track OOI in videos.

[1]  Gang Hua,et al.  VideoCut: Removing Irrelevant Frames by Discovering the Object of Interest , 2008, ECCV.

[2]  Denis Simakov,et al.  Summarizing visual data using bidirectional similarity , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Yanxi Liu,et al.  Online selection of discriminative tracking features , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Ze-Nian Li,et al.  Automatic object extraction and reconstruction in active video , 2008, Pattern Recognit..

[5]  Christof Koch,et al.  Comparison of feature combination strategies for saliency-based visual attention systems , 1999, Electronic Imaging.

[6]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[7]  James W. Davis,et al.  Real-time closed-world tracking , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[8]  W. Eric L. Grimson,et al.  Learning Patterns of Activity Using Real-Time Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Shai Avidan,et al.  Support vector tracking , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Andrew Blake,et al.  Digital tapestry [automatic image synthesis] , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[11]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[12]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[13]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  S. Avidan,et al.  Seam carving for content-aware image resizing , 2007, SIGGRAPH 2007.

[15]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[17]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.

[18]  Ze-Nian Li,et al.  Image trimming via saliency region detection and iterative feature matching , 2009, 2009 IEEE International Conference on Multimedia and Expo.

[19]  Jean-Yves Chouinard,et al.  Information Theory and Applications , 1994, Lecture Notes in Computer Science.

[20]  Xing Xie,et al.  Salient Region Detection Using Weighted Feature Maps Based on the Human Visual Attention Model , 2004, PCM.

[21]  Wei You,et al.  Real-time multiple object tracking in smart environments , 2009, 2008 IEEE International Conference on Robotics and Biomimetics.

[22]  Robert T. Collins,et al.  Mean-shift blob tracking through scale space , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[23]  B. Julesz Dialogues on Perception , 1994 .

[24]  Wilfried Enkelmann,et al.  Video-Based Driver Assistance--From Basic Functions to Applications , 2001, International Journal of Computer Vision.

[25]  ZuWhan Kim Real time object tracking based on dynamic feature grouping with background subtraction , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[26]  Michael Brady,et al.  Saliency, Scale and Image Description , 2001, International Journal of Computer Vision.

[27]  Jitendra Malik,et al.  Learning to detect natural image boundaries using local brightness, color, and texture cues , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  R. Carpenter,et al.  Movements of the Eyes , 1978 .

[29]  Mohammed Ghanbari,et al.  Video Coding: An Introduction to Standard Codecs , 1999 .

[30]  Z. Zivkovic Improved adaptive Gaussian mixture model for background subtraction , 2004, ICPR 2004.

[31]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[32]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[33]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[34]  Shai Avidan,et al.  Ensemble Tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Kai-Kuang Ma,et al.  A new diamond search algorithm for fast block-matching motion estimation , 2000, IEEE Trans. Image Process..

[37]  John K. Tsotsos,et al.  Modeling Visual Attention via Selective Tuning , 1995, Artif. Intell..

[38]  Nuno Vasconcelos,et al.  Background subtraction in highly dynamic scenes , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[39]  Andrew Hogue,et al.  Histogram-based search: A comparative study , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.