Image quality metric based on multidimensional contrast perception models

Abstract The procedure to compute the subjective difference between two input images should be equivalent to a straightforward difference between their perceived versions, hence reliable subjective difference metrics must be founded on a proper perception model. For image distortion evaluation purposes, perception can be considered as a set of signal transforms that successively map the original image in the spatial domain into a feature and a response space. The properties of the spatial pattern analyzers involved in these transforms determine the geometry of these different signal representation domains. In this work the general relations between the sensitivity of the human visual system and the perceptual geometry of the different representation spaces are presented. This general formalism is particularized through a novel physiological model of response summation of cortical cells that reproduce the psychophysical data of contrast incremental thresholds. In this way, a procedure to compute subjective distances between images in any representation domain is obtained. The reliability of the proposed scheme is tested in two different contexts. On the one hand, it reproduces the results of suprathreshold contrast matching experiences and subjective contrast scales (Georgeson and Shackleton, Vision Res. 34 (1994) 1061–1075; Swanson et al., Vision Res. 24 (1985) 63–75; Cannon, Vision Res. 19 (1979) 1045–1052; Biondini and Mattiello, Vision Res. 25 (1985) 1–9), and on the other hand, it provides a theoretical background that generalizes our previous perceptual difference model (Malo et al., Im. Vis. Comp. 15 (1997) 535–548) whose outputs are linearly related to experimental subjective assessment of distortion.

[1]  Andrew B. Watson,et al.  Digital images and human vision , 1993 .

[2]  Wilson S. Geisler,et al.  Multichannel Texture Analysis Using Localized Spatial Filters , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  G. Legge A power law for contrast discrimination , 1981, Vision Research.

[4]  P. Lennie Parallel visual pathways: A review , 1980, Vision Research.

[5]  Jerome R. Cox,et al.  Experimental evaluation of psychophysical distortion metrics for JPEG-encoded images , 1995, J. Electronic Imaging.

[6]  V Kayargadde,et al.  Perceptual characterization of images degraded by blur and noise: experiments. , 1996, Journal of the Optical Society of America. A, Optics, image science, and vision.

[7]  B. Dubrovin,et al.  Modern geometry--methods and applications , 1984 .

[8]  J G Daugman,et al.  Information Theory and Coding , 1998 .

[9]  Scott J. Daly,et al.  Visible differences predictor: an algorithm for the assessment of image fidelity , 1992, Electronic Imaging.

[10]  DH Hubel,et al.  Color and contrast sensitivity in the lateral geniculate body and primary visual cortex of the macaque monkey , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  Sergei Petrovich Novikov,et al.  Tensors: The Algebraic Theory , 1984 .

[12]  Dennis M. Levi,et al.  Contrast increment thresholds of rhesus monkeys , 1982, Vision Research.

[13]  M. Cannon,et al.  A transducer model for contrast perception. , 1991, Vision research.

[14]  Scott S. Grigsby,et al.  Perceptual correlates of magnocellular and parvocellular channels: Seeing form and depth in afterimages , 1990, Vision Research.

[15]  J. Nelson,et al.  Human VEP contrast modulation sensitivity: separation of magno- and parvocellular components. , 1992, Electroencephalography and clinical neurophysiology.

[16]  Jesús Malo,et al.  Splitting criterion for hierarchical motion estimation based on perceptual coding , 1998 .

[17]  J. Pokorny,et al.  Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[18]  B. Wandell Foundations of vision , 1995 .

[19]  H. Wilson,et al.  Modified line-element theory for spatial-frequency and width discrimination. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[20]  Quick Rf A vector-magnitude model of contrast detection. , 1974 .

[21]  P. Lennie,et al.  Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[22]  Christopher W. Tyler,et al.  On the role of X and simple cells in human contrast processing , 1994, Vision Research.

[23]  S. S. Stevens On the psychophysical law. , 1957, Psychological review.

[24]  R. Haddad,et al.  Multiresolution Signal Decomposition: Transforms, Subbands, and Wavelets , 1992 .

[25]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[26]  M. Georgeson,et al.  Perceived contrast of gratings and plaids: Non-linear summation across oriented filters , 1994, Vision Research.

[27]  Jeffrey Lubin,et al.  The use of psychophysical data and models in the analysis of display system performance , 1993 .

[28]  L. Spillmann,et al.  Visual Perception: The Neurophysiological Foundations , 1989 .

[29]  John A. Saghri,et al.  Image Quality Measure Based On A Human Visual System Model , 1989 .

[30]  K. M. Blackwood Displays , 2000, Encyclopedia of Evolutionary Psychological Science.

[31]  Hugh R. Wilson,et al.  10 – THE PERCEPTION OF FORM: Retina to Striate Cortex , 1989 .

[32]  Andrew B. Watson,et al.  Detection and Recognition of Simple Spatial Forms , 1983 .

[33]  Jesús Malo,et al.  Subjective image fidelity metric based on bit allocation of the human visual system in the DCT domain , 1997, Image Vis. Comput..

[34]  D. H. Kelly Receptive-field-like functions inferred from large-area psychophysical measurements , 1985, Vision Research.

[35]  Mark W. Cannon,et al.  A transducer model for contrast perceptio , 1991, Vision Research.

[36]  Mark D. Fairchild,et al.  Color Appearance Models , 1997, Computer Vision, A Reference Guide.

[37]  Peter G. J. Barten,et al.  Evaluation of Subjective Image Quality with the Square Root Integral Method , 1990, Applied Vision.

[38]  Barr,et al.  Superquadrics and Angle-Preserving Transformations , 1981, IEEE Computer Graphics and Applications.

[39]  P. King-Smith,et al.  Detection of coloured stimuli by independent linear systems , 1979, Vision Research.

[40]  J Nachmias,et al.  Letter: Grating contrast: discrimination may be better than detection. , 1974, Vision research.

[41]  P. Lennie,et al.  Coding of image contrast in central visual pathways of the macaque monkey , 1990, Vision Research.

[42]  Hugh R. Wilson,et al.  Contrast matching data predicted from contrast increment thresholds , 1984, Vision Research.

[43]  J A Solomon,et al.  Model of visual contrast gain control and pattern masking. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[44]  Andrew B. Watson,et al.  The cortex transform: rapid computation of simulated neural images , 1987 .

[45]  D. O. Bowker,et al.  Suprathreshold spatiotemporal response characteristics of the human visual system. , 1983, Journal of the Optical Society of America.

[46]  Andrew B. Watson,et al.  Image quality and entropy masking , 1997, Electronic Imaging.

[47]  D. Tolhurst,et al.  Psychophysical evidence for sustained and transient detectors in human vision , 1973, The Journal of physiology.

[48]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[49]  M. L. F. D. Mattiello,et al.  Suprathreshold contrast perception at different luminance levels , 1985, Vision Research.

[50]  Brian Bouzas,et al.  Objective image quality measure derived from digital image power spectra , 1992 .

[51]  Jesús Malo,et al.  Characterization of the human visual system threshold performance by a weighting function in the Gabor domain , 1997 .

[52]  Robert J. Safranek,et al.  Signal compression based on models of human perception , 1993, Proc. IEEE.

[53]  Alexander Toet,et al.  COMPUTATIONAL VISUAL DISTINCTNESS METRIC , 1998 .

[54]  J. Maunsell,et al.  The effects of parvocellular lateral geniculate lesions on the acuity and contrast sensitivity of macaque monkeys , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  J. Daugman Spatial visual channels in the fourier plane , 1984, Vision Research.

[56]  Mahdi Nezamabadi,et al.  Color Appearance Models , 2014, J. Electronic Imaging.

[57]  Hans Marmolin,et al.  Subjective MSE Measures , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[58]  J. M. Foley,et al.  Contrast masking in human vision. , 1980, Journal of the Optical Society of America.

[59]  D. G. Albrecht,et al.  Striate cortex of monkey and cat: contrast response function. , 1982, Journal of neurophysiology.

[60]  Jesús Malo,et al.  Bit allocation algorithm for codebook design in vector quantisation fully based on human visual system nonlinearities for suprathreshold contrasts , 1995 .

[61]  Mark W. Cannon,et al.  Contrast sensation: A linear function of stimulus contrast , 1979, Vision Research.

[62]  V. Kayargadde,et al.  Perceptual characterization of images degraded by blur and noise: model. , 1996, Journal of the Optical Society of America. A, Optics, image science, and vision.

[63]  M. J. Luque,et al.  Colour representation spaces at different physiological levels : A comparative analysis , 1998 .

[64]  J. Bergen,et al.  Texture segregation and orientation gradient , 1991, Vision Research.

[65]  Michael H. Brill,et al.  Color appearance models , 1998 .

[66]  J. Maunsell,et al.  Macaque vision after magnocellular lateral geniculate lesions , 1990, Visual Neuroscience.