Combining watershed and statistical analysis for SAR image segmentation

Synthetic aperture radar (SAR) images are affected by speckle noise, which gives a granular appearance to them. This noisy pattern can lead to difficulties when dealing with tasks such as edge detection, image segmentation, classification and interpretation. This paper presents a new technique for SAR image segmentation that combines mathematical morphology and speckle noise statistics. The novelty of this approach consists on a modified version of the watershed transformation that discards a preprocessing step or data conditioning. Segmentation results on real SAR and synthetic speckled images demonstrate the effectiveness of the proposed method.

[1]  Cedric Nishan Canagarajah,et al.  Image segmentation using a texture gradient based watershed transform , 2003, IEEE Trans. Image Process..

[2]  O. Heinisch,et al.  Fisz, H.: Probability Theory and Mathematical Statistics. 3. Aufl. John Wiley & Sons, Inc., New York, London 1963; 677 S., Preis 115 s , 1964 .

[3]  Marek Fisz,et al.  Probability Theory and Mathematical Statistics , 1964 .

[4]  Montse Pardàs,et al.  Hierarchical morphological segmentation for image sequence coding , 1994, IEEE Trans. Image Process..

[5]  Mahmoud R. El-Sakka,et al.  Watershed segmentation for carotid artery ultrasound images , 2005, The 3rd ACS/IEEE International Conference onComputer Systems and Applications, 2005..

[6]  Rod Cook,et al.  MUM (Merge Using Moments) segmentation for SAR images , 1994, Remote Sensing.

[7]  Jong-Sen Lee Speckle suppression and analysis for synthetic aperture radar images , 1986 .

[8]  B. Ogor,et al.  SAR image segmentation by mathematical morphology and texture analysis , 1996, IGARSS '96. 1996 International Geoscience and Remote Sensing Symposium.

[9]  W. Press,et al.  Numerical Recipes in C++: The Art of Scientific Computing (2nd edn)1 Numerical Recipes Example Book (C++) (2nd edn)2 Numerical Recipes Multi-Language Code CD ROM with LINUX or UNIX Single-Screen License Revised Version3 , 2003 .

[10]  T.J.P. Arif SAR Images Segmentation Using Region Growing Approach , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.

[11]  F.N.S. Medeiros,et al.  Spots segmentation in SAR images for remote sensing of environment , 2004, 6th IEEE Southwest Symposium on Image Analysis and Interpretation, 2004..

[12]  Morris Goldberg,et al.  Hierarchy in Picture Segmentation: A Stepwise Optimization Approach , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[14]  Jong-Sen Lee,et al.  Digital Image Enhancement and Noise Filtering by Use of Local Statistics , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Luciano da Fontoura Costa,et al.  Evaluation of speckle noise MAP filtering algorithms applied to SAR images , 2003 .

[16]  A. M. Walker,et al.  Probability Theory and Mathematical Statistics. By Marek Fisz. Pp. xvi, 677. 115s. 1963. (John Wiley and Sons: New York, London) , 1965, The Mathematical Gazette.

[17]  Aggelos K. Katsaggelos,et al.  Hybrid image segmentation using watersheds and fast region merging , 1998, IEEE Trans. Image Process..

[18]  Luc Vincent,et al.  Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  William A. Pearlman,et al.  Speckle filtering of SAR images based on adaptive windowing , 1999 .

[20]  LeeJong-Sen Digital Image Enhancement and Noise Filtering by Use of Local Statistics , 1980 .

[21]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[22]  Philippe Marthon,et al.  Multiresolution Edge Detection in SAR Images , 1997 .